3 resultados para Design strategies

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Increasing attention is being paid to improvement in undergraduate science, technology, engineering, and mathematics (STEM) education through increased adoption of research-based instructional strategies (RBIS), but high-quality measures of faculty instructional practice do not exist to monitor progress. Purpose/Hypothesis The measure of how well an implemented intervention follows the original is called fidelity of implementation. This theory was used to address the research questions: What is the fidelity of implementation of selected RBIS in engineering science courses? That is, how closely does engineering science classroom practice reflect the intentions of the original developers? Do the critical components that characterize an RBIS discriminate between engineering science faculty members who claimed use of the RBIS and those who did not? Design/Method A survey of 387 U.S. faculty teaching engineering science courses (e.g., statics, circuits, thermodynamics) included questions about class time spent on 16 critical components and use of 11 corresponding RBIS. Fidelity was quantified as the percentage of RBIS users who also spent time on corresponding critical components. Discrimination between users and nonusers was tested using chi square. Results Overall fidelity of the 11 RBIS ranged from 11% to 80% of users spending time on all required components. Fidelity was highest for RBIS with one required component: case-based teaching, just-in-time teaching, and inquiry learning. Thirteen of 16 critical components discriminated between users and nonusers for all RBIS to which they were mapped. Conclusions Results were consistent with initial mapping of critical components to RBIS. Fidelity of implementation is a potentially useful framework for future work in STEM undergraduate education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the fact that photographic stimuli are used across experimental contexts with both human and nonhuman subjects, the nature of individuals' perceptions of these stimuli is still not well understood. In the present experiments, we tested whether three orangutans and 36 human children could use photographic information presented on a computer screen to solve a perceptually corresponding problem in the physical domain. Furthermore, we tested the cues that aided in this process by pitting featural information against spatial position in a series of probe trials. We found that many of the children and one orangutan were successfully able to use the information cross-dimensionally; however, the other two orangutans and almost a quarter of the children failed to acquire the task. Species differences emerged with respect to ease of task acquisition. More striking, however, were the differences in cues that participants used to solve the task: Whereas the orangutan used a spatial strategy, the majority of children used a feature one. Possible reasons for these differences are discussed from both evolutionary and developmental perspectives. The novel results found here underscore the need for further testing in this area to design appropriate experimental paradigms in future comparative research settings.