4 resultados para Design and Formative Studies of AIED Systems

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, and tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment. Many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Consequently, there is an ongoing need for breast cancer drugs that have different molecular targets. Previous work has shown that 8-mer and cyclic 9-mer peptides inhibit breast cancer in mouse and rat models, interacting with an unsolved receptor, while peptides smaller than eight amino acids did not. We show that the use of replica exchange molecular dynamics predicts the structure and dynamics of active peptides, leading to the discovery of smaller peptides with full biological activity. Simulations identified smaller peptide analogues with the same conserved reverse turn demonstrated in the larger peptides. These analogues were synthesized and shown to inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvatochromism and thermochromism describe how a solvent or environment affects the photophysical behavior of a photoluminescent solute. The most common use of solvatochromism is as a probe in which the polarity of a solvent in which a solvatochromic solute is dissolved can be spectroscopically measured. Solvatochromic and thermochromic studies of tryptanthrin in several different solvents are reported. Absorption and corrected emission spectra for tryptanthrin at ~10-6 M concentrations are reported in four aprotic and nine alcoholic solvents. The absorption spectra are relatively unaffected by changes in solvent polarity and by differences in the hydrogen bonding ability of the alcoholic solvents. The emission spectra are much more affected by changes in solvent polarity and hydrogen bonding ability. In aprotic solvents, emission energy decreases and emission intensity increases with increasing solvent polarity. In the alcoholic solvents, emission energy also decreases with increasing solvent polarity. However, emission intensity for the alcoholic solvents varies significantly from the aprotic solvents over similar polarity ranges. This suggests that in the alcoholic solvents, hydrogen bonding ability correlates better than polarity to emission energy and intensity trends. The absorption and emission data in the aprotic solvents were also used to estimate the ground and emitting excited state dipole moments for tryptanthrin. The value obtained for the ground state dipole moment (2.37 D) agrees with theoretical results (2.06 D) and a previously reported experimental value (2.0 D). Attempts to explain previously reported results and conclusions with respect to the solvatochromic behavior of the aromatic carbonyls fluorenone and benzo(b)fluorenone were explored in an attempt to understand the solvatochromic response of tryptanthrin. Such attempts include models dependent on non-radiative decay pathways like intersystem crossing, internal conversion, and hydrogen bonding interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.