7 resultados para Density functional theory calculations

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SVWN, BVWN, BP86, BLYP, BPW91, B3P86, B3LYP, B3PW91, B1LYP, mPW1PW, and PBE1PBE density functionals, as implemented in Gaussian 98 and Gaussian 03, were used to calculate ΔG0 and ΔH0 values for 17 deprotonation reactions where the experimental values are accurately known. The PBE1PBE and B3P86 functionals are shown to compute results with accuracy comparable to more computationally intensive compound model chemistries. A rationale for the relative performance of various functionals is explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calculations were run on the methylated DNA base pairs adenine:thymine and adenine:difluorotoluene to further investigate the hydrogen-bonding properties of difluorotoluene (F). Geometries were optimized using hybrid density functional theory. Single-point calculations at the MP2(full) level were performed to obtain more rigorous energies. The functional counterpoise method was used to correct for the basis set superposition error (BSSE), and the interaction energies were also corrected for fragment relaxation. These corrections brought the B3LYP and MP2 interaction energies into excellent agreement. In the gas phase, the Gibbs free energies calculated at the B3LYP and MP2 levels of theory predict that A and T will spontaneously form an A:T pair while A:F spontaneously dissociates into A and F. Solvation effects on the pairing of the bases were explored using implicit solvent models for water and chloroform. In aqueous solution, both A:T and A:F are predicted to dissociate into their component monomers. Semiempirical calculations were performed on small sections of B-form DNA containing the two pairs, and the results provide support for the concept that base stacking is more important than hydrogen bonding for the stability of the A:F pair within a DNA helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of enediynes into anticancer drugs remains an intriguing yet elusive strategy for the design of therapeutically active agents. Density functional theory was used to locate reactants, products, and transition states along the Bergman cyclization pathways connecting enediynes to reactive para-biradicals. Sum method correction to low-level calculations confirmed B3LYP/6-31G(d,p) as the method of choice in investigating enediynes. Herein described as MI:Sum, calculated reaction enthalpies differed from experiment by an average of 2.1 kcal·mol−1 (mean unsigned error). A combination of strain energy released across the reaction coordinate and the critical intramolecular distance between reacting diynes explains reactivity differences. Where experimental and calculated barrier heights are in disagreement, higher level multireference treatment of the enediynes confirms lower level estimates. Previous work concerning the chemically reactive fragment of esperamcin, MTC, is expanded to our model system MTC2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H2SO4(H2O)n where n = 1–6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller–Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO4–·H3O+)(H2O)n−1clusters are competitive with the neutral (H2SO4)(H2O)n clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H2SO4(H2O)n clusters are favorable in colder regions of the troposphere (T = 216.65–273.15 K) for n = 1–6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H2SO4–H2O system must contain more than one H2SO4 and are in concert with recent findings(1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collision-induced dissociation (CID) of peptides using tandem mass spectrometry (MS) has been used to determine the identity of peptides and other large biological molecules. Mass spectrometry (MS) is a useful tool for determining the identity of molecules based on their interaction with electromagnetic fields. If coupled with another method like infrared (IR) vibrational spectroscopy, MS can provide structural information, but in its own right, MS can only provide the mass-to-charge (m/z) ratio of the fragments produced, which may not be enough information to determine the mechanism of the collision-induced dissociation (CID) of the molecule. In this case, theoretical calculations provide a useful companion for MS data and yield clues about the energetics of the dissociation. In this study, negative ion electrospray tandem MS was used to study the CID of the deprotonated dipeptide glycine-serine (Gly-Ser). Though negative ion MS is not as popular a choice as positive ion MS, studies by Bowie et al. show that it yields unique clues about molecular structure which complement positive ion spectroscopy, such as characteristic fragmentations like the loss of formaldehyde from the serine residue.2 The increase in the collision energy in the mass spectrometer alters the flexibility of the dipeptide backbone, enabling isomerizations (reactions not resulting in a fragment loss) and dissociations to take place. The mechanism of the CID of Gly-Ser was studied using two computational methods, B3LYP/6-311+G* and M06-2X/6-311++G**. The main pathway for molecular dissociation was analyzed in 5 conformers in an attempt to verify the initial mechanism proposed by Dr. James Swan after examination of the MS data. The results suggest that the loss of formaldehyde from serine, which Bowie et al. indicates is a characteristic of the presence of serine in a protein residue, is an endothermic reaction that is made possible by the conversion of the translational energy of the ion into internal energy as the ion collides with the inert collision gas. It has also been determined that the M06-2X functional¿s improved description of medium and long-range correlation makes it more effective than the B3LYP functional at finding elusive transition states. M06-2X also more accurately predicts the energy of those transition states than does B3LYP. A second CID mechanism, which passes through intermediates with the same m/z ratio as the main pathway for molecular dissociation, but different structures, including a diketopiperazine intermediate, was also studied. This pathway for molecular dissociation was analyzed with 3 conformers and the M06-2X functional, due to its previously determined effectiveness. The results suggest that the latter pathway, which meets the same intermediate masses as the first mechanism, is lower in overall energy and therefore a more likely pathway of dissociation than the first mechanism.