1 resultado para Data envelopment analysis-DEA

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

WE INVESTIGATED HOW WELL STRUCTURAL FEATURES such as note density or the relative number of changes in the melodic contour could predict success in implicit and explicit memory for unfamiliar melodies. We also analyzed which features are more likely to elicit increasingly confident judgments of "old" in a recognition memory task. An automated analysis program computed structural aspects of melodies, both independent of any context, and also with reference to the other melodies in the testset and the parent corpus of pop music. A few features predicted success in both memory tasks, which points to a shared memory component. However, motivic complexity compared to a large corpus of pop music had different effects on explicit and implicit memory. We also found that just a few features are associated with different rates of "old" judgments, whether the items were old or new. Rarer motives relative to the testset predicted hits and rarer motives relative to the corpus predicted false alarms. This data-driven analysis provides further support for both shared and separable mechanisms in implicit and explicit memory retrieval, as well as the role of distinctiveness in true and false judgments of familiarity.