6 resultados para DARK ENERGY MODELS

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model based calibration has gained popularity in recent years as a method to optimize increasingly complex engine systems. However virtually all model based techniques are applied to steady state calibration. Transient calibration is by and large an emerging technology. An important piece of any transient calibration process is the ability to constrain the optimizer to treat the problem as a dynamic one and not as a quasi-static process. The optimized air-handling parameters corresponding to any instant of time must be achievable in a transient sense; this in turn depends on the trajectory of the same parameters over previous time instances. In this work dynamic constraint models have been proposed to translate commanded to actually achieved air-handling parameters. These models enable the optimization to be realistic in a transient sense. The air handling system has been treated as a linear second order system with PD control. Parameters for this second order system have been extracted from real transient data. The model has been shown to be the best choice relative to a list of appropriate candidates such as neural networks and first order models. The selected second order model was used in conjunction with transient emission models to predict emissions over the FTP cycle. It has been shown that emission predictions based on air-handing parameters predicted by the dynamic constraint model do not differ significantly from corresponding emissions based on measured air-handling parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete basis set and Gaussian-n methods were combined with Barone and Cossi's implementation of the polarizable conductor model (CPCM) continuum solvation methods to calculate pKa values for six carboxylic acids. Four different thermodynamic cycles were considered in this work. An experimental value of −264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of −6.28 kcal/mol, to calculate pKa values with cycle 1. The complete basis set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. Thermodynamic cycles that include an explicit water in the cycle are not accurate when the free energy of solvation of a water molecule is used, but appear to become accurate when the experimental free energy of vaporization of water is used. This apparent improvement is an artifact of the standard state used in the calculation. Geometry relaxation in solution does not improve the results when using these later cycles. The use of cycle 1 and the complete basis set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete Basis Set and Gaussian-n methods were combined with CPCM continuum solvation methods to calculate pKa values for six carboxylic acids. An experimental value of −264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of −6.28 kcal/mol to calculate pKa values with Cycle 1. The Complete Basis Set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. The use of Cycle 1 and the Complete Basis Set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete basis set methods CBS-4, CBS-QB3, and CBS-APNO, and the Gaussian methods G2 and G3 were used to calculate the gas phase energy differences between six different carboxylic acids and their respective anions. Two different continuum methods, SM5.42R and CPCM, were used to calculate the free energy differences of solvation for the acids and their anions. Relative pKa values were calculated for each acid using one of the acids as a reference point. The CBS-QB3 and CBS-APNO gas phase calculations, combined with the CPCM/HF/6-31+G(d)//HF/6-31G(d) or CPCM/HF/6-31+G(d)//HF/6-31+G(d) continuum solvation calculations on the lowest energy gas phase conformer, and with the conformationally averaged values, give results accurate to ½ pKa unit. © 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gaussian-3 (G3) model chemistry method has been used to calculate the relative ΔG° values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3−5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20 736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land surface temperature (LST) plays a key role in governing the land surface energy budget, and measurements or estimates of LST are an integral part of many land surface models and methods to estimate land surface sensible heat (H) and latent heat fluxes. In particular, the LST anchors the potential temperature profile in Monin-Obukhov similarity theory, from which H can be derived. Brutsaert has made important contributions to our understanding the nature of surface temperature measurements as well as the practical but theoretically sound use of LST in this framework. His work has coincided with the wide-spread availability of remotely sensed LST measurements. Use of remotely sensed LST estimates inevitably involves complicating factors, such as: varying spatial and temporal scales in measurements, theory, and models; spatial variability of LST and H; the relationship between measurements of LST and the temperature felt by the atmosphere; and the need to correct satellite-based radiometric LST measurements for the radiative effects of the atmosphere. This paper reviews the progress made in research in these areas by tracing and commenting on Brutsaert's contributions.