3 resultados para Crack Cocaine

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison of the crystal structure of a transition state analogue that was used to raise catalytic antibodies for the benzoyl ester hydrolysis of cocaine with structures calculated by ab initio, semiempirical, and solvation semiempirical methods reveals that modeling of solvation is crucial for replicating the crystal structure geometry. Both SM3 and SM2 calculations, starting from the crystal structure TSA I, converged on structures similar to the crystal structure. The 3-21G(*)/HF, 6-31G*/HF, PM3, and AM1 calculations converged on structures similar to each other, but these gas-phase structures were significantly extended relative to the condensed phase structures. Two transition states for the hydrolysis of the benzoyl ester of cocaine were located with the SM3 method. The gas phase calculations failed to locate reasonable transition state structures for this reaction. These results imply that accurate modeling of the potential energy surfaces for the hydrolysis of cocaine requires solvation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiempirical molecular orbital calculations have been performed for the first step in the alkaline hydrolysis of the neutral benzoylester of cocaine. Successes, failures, and limitations of these calculations are reviewed. A PM3 calculated transition state structure is compared with the PM3 calculated structure for the hapten used to induce catalytic antibodies for the hydrolysis of cocaine. Implications of these calculations for the computer–aided design of transition state analogs for the induction of catalytic antibodies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, ∼4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody-based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl-ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.