3 resultados para Course maximale

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and effective demonstration to help students comprehend phase diagrams and understand phase equilibria and transformations is created using common chemical solvents available in the laboratory. Common misconceptions surrounding phase diagram operations, such as components versus phases, reversibility of phase transformations, and the lever rule are addressed. Three different binary liquid mixtures of varying compatibility create contrastive phase equilibrium cases, where colorful dyes selectively dissolved in each of corresponding phases allow for quick and unambiguous perceptions of solubility limit and phase transformations. Direct feedback and test scores from a group of students show evidence of the effectiveness of the visual and active teaching tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An introductory course in probability and statistics for third-year and fourth-year electrical engineering students is described. The course is centered around several computer-based projects that are designed to achieve two objectives. First, the projects illustrate the course topics and provide hands-on experience for the students. The second and equally important objective of the projects is to convey the relevance and usefulness of probability and statistics to practical problems that undergraduate students can appreciate. The benefit of this course as to motivate electrical engineering students to excel in the study of probability concepts, instead of viewing the subject as one more course requirement toward graduation. The authors co-teach the course, and MATLAB is used for mast of the computer-based projects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.