1 resultado para Corpus Striatum
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (16)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (31)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (33)
- Bibloteca do Senado Federal do Brasil (63)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston College Law School, Boston College (BC), United States (1)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (22)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (4)
- DigitalCommons@The Texas Medical Center (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (4)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Glasgow Theses Service (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (41)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (3)
- Indian Institute of Science - Bangalore - Índia (17)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (5)
- Memoria Académica - FaHCE, UNLP - Argentina (50)
- Ministerio de Cultura, Spain (24)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (124)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- Repositorio Académico de la Universidad Nacional de Costa Rica (2)
- Repositorio Institucional de la Universidad de La Laguna (2)
- Repositorio Institucional de la Universidad de Málaga (4)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (55)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad Autónoma de Nuevo León, Mexico (7)
- Universidad de Alicante (16)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal de Uberlândia (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (16)
- University of Connecticut - USA (1)
- University of Michigan (111)
- University of Queensland eSpace - Australia (3)
- University of Washington (2)
Resumo:
We present a new approach for corpus-based speech enhancement that significantly improves over a method published by Xiao and Nickel in 2010. Corpus-based enhancement systems do not merely filter an incoming noisy signal, but resynthesize its speech content via an inventory of pre-recorded clean signals. The goal of the procedure is to perceptually improve the sound of speech signals in background noise. The proposed new method modifies Xiao's method in four significant ways. Firstly, it employs a Gaussian mixture model (GMM) instead of a vector quantizer in the phoneme recognition front-end. Secondly, the state decoding of the recognition stage is supported with an uncertainty modeling technique. With the GMM and the uncertainty modeling it is possible to eliminate the need for noise dependent system training. Thirdly, the post-processing of the original method via sinusoidal modeling is replaced with a powerful cepstral smoothing operation. And lastly, due to the improvements of these modifications, it is possible to extend the operational bandwidth of the procedure from 4 kHz to 8 kHz. The performance of the proposed method was evaluated across different noise types and different signal-to-noise ratios. The new method was able to significantly outperform traditional methods, including the one by Xiao and Nickel, in terms of PESQ scores and other objective quality measures. Results of subjective CMOS tests over a smaller set of test samples support our claims.