3 resultados para Context-based teaching

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Increasing attention is being paid to improvement in undergraduate science, technology, engineering, and mathematics (STEM) education through increased adoption of research-based instructional strategies (RBIS), but high-quality measures of faculty instructional practice do not exist to monitor progress. Purpose/Hypothesis The measure of how well an implemented intervention follows the original is called fidelity of implementation. This theory was used to address the research questions: What is the fidelity of implementation of selected RBIS in engineering science courses? That is, how closely does engineering science classroom practice reflect the intentions of the original developers? Do the critical components that characterize an RBIS discriminate between engineering science faculty members who claimed use of the RBIS and those who did not? Design/Method A survey of 387 U.S. faculty teaching engineering science courses (e.g., statics, circuits, thermodynamics) included questions about class time spent on 16 critical components and use of 11 corresponding RBIS. Fidelity was quantified as the percentage of RBIS users who also spent time on corresponding critical components. Discrimination between users and nonusers was tested using chi square. Results Overall fidelity of the 11 RBIS ranged from 11% to 80% of users spending time on all required components. Fidelity was highest for RBIS with one required component: case-based teaching, just-in-time teaching, and inquiry learning. Thirteen of 16 critical components discriminated between users and nonusers for all RBIS to which they were mapped. Conclusions Results were consistent with initial mapping of critical components to RBIS. Fidelity of implementation is a potentially useful framework for future work in STEM undergraduate education.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consultation is promoted throughout school psychology literature as a best practice in service delivery. This method has numerous benefits including being able to work with more students at one time, providing practitioners with preventative rather than strictly reactive strategies, and helping school professionals meet state and federal education mandates and initiatives. Despite the benefits of consultation, teachers are sometimes resistant to this process.This research studies variables hypothesized to lead to resistance (Gonzalez, Nelson, Gutkin, & Shwery, 2004) and attempts to distinguish differences between school level (elementary, middle and high school) with respect to the role played by these variables and to determine if the model used to identify students for special education services has an influence on resistance factors. Twenty-sixteachers in elementary and middle schools responded to a demographicquestionnaire and a survey developed by Gonzalez, et al. (2004). This survey measures eight variables related to resistance to consultation. No high school teachers responded to the request to participate. Results of analysis of variance indicated a significant difference in the teaching efficacy subscale with elementary teachers reporting more efficacy in teaching than middle school teachers. Results also indicate a significant difference in classroom managementefficacy with teachers who work in schools that identify students according to a Response to Intervention model reporting higher classroom management efficacy than teachers who work in schools that identify students according to a combined method of refer-test-place/RtI combination model. Implications, limitations and directions for future research are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Misconceptions exist in all fields of learning and develop through a person’s preconception of how the world works. Students with misconceptions in chemical engineering are not capable of correctly transferring knowledge to a new situation and will likely arrive at an incorrect solution. The purpose of this thesis was to repair misconceptions in thermodynamics by using inquiry-based activities. Inquiry-based learning is a method of teaching that involves hands-on learning and self-discovery. Previous work has shown inquiry-based methods result in better conceptual understanding by students relative to traditional lectures. The thermodynamics activities were designed to guide students towards the correct conceptual understanding through observing a preconception fail to hold up through an experiment or simulation. The developed activities focus on the following topics in thermodynamics: “internal energy versus enthalpy”, “equilibrium versus steady state”, and “entropy”. For each topic, two activities were designed to clarify the concept and assure it was properly grasped. Each activity was coupled with an instructions packet containing experimental procedure as well as pre- and post-analysis questions, which were used to analyze the effect of the activities on the students’ responses. Concept inventories were used to monitor students’ conceptual understanding at the beginning and end of the semester. The results did not show a statistically significant increase in the overall concept inventory scores for students who performed the activities compared to traditional learning. There was a statistically significant increase in concept area scores for “internal energy versus enthalpy” and “equilibrium versus steady state”. Although there was not a significant increase in concept inventory scores for “entropy”, written analyses showed most students’ misconceptions were repaired. Students transferred knowledge effectively and retained most of the information in the concept areas of “internal energy versus enthalpy” and “equilibrium versus steady state”.