2 resultados para Conceptual model

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using path analysis, the present investigation sought to clarify possible operational linkages among constructs from social learning and attribution theories within the context of a self-esteem system. Subjects were 300 undergraduate university students who completed a measure of self-esteem and indicated expectancies for success and minimal goal levels for an experimental task. After completing the task and receiving feedback about their performance, subjects completed causal attribution and self-esteem questionnaires. Results revealed gender differences in the degree and strength of the proposed relations, but not in the mean levels of the variables studied. Results suggested that the integration of social learning and attribution theories within a single conceptual model provides a better understanding of students' behaviors and self-esteem in achievement situations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u (*)/u (*R) , where u (*) is the friction velocity and u (*R) is the friction velocity from the uniform building height case, is expressed well as an algebraic function of lambda and sigma (h) /h (m) , where lambda is the frontal area index, sigma (h) is the standard deviation of the building height, and h (m) is the mean building height. The simulations also resulted in a simple algebraic relation for z (0)/z (0R) as a function of lambda and sigma (h) /h (m) , where z (0) is the aerodynamic roughness length and z (0R) is z (0) found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.