12 resultados para Computer Engineering
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Many research-based instruction strategies (RBISs) have been developed; their superior efficacy with respect to student learning has been demonstrated in many studies. Collecting and interpreting evidence about: 1) the extent to which electrical and computer engineering (ECE) faculty members are using RBISs in core, required engineering science courses, and 2) concerns that they express about using them, are important aspects of understanding how engineering education is evolving. The authors surveyed ECE faculty members, asking about their awareness and use of selected RBISs. The survey also asked what concerns ECE faculty members had about using RBISs. Respondent data showed that awareness of RBISs was very high, but estimates of use of RBISs, based on survey data, varied from 10% to 70%, depending on characteristics of the strategy. The most significant concern was the amount of class time that using an RBIS might take; efforts to increase use of RBISs must address this.
Resumo:
Engineering faculty members at Bucknell University have established a course required for freshman engineering students and open to liberal arts students. The course has been designed to stimulate and enhance student interest in all the engineering disciplines at Bucknell. The course ranges broadly across small groups, faculty-lead recitations, laboratory experiences, student design projects, traditional lectures, and guest speakers. The exploring engineering course has completed its second year. The authors describe the course, the changes made since the initial offering and the impact on the students and faculty involved. They also present and interpret student evaluations of the course.(4 refs)
Resumo:
Electric power grids throughout the world suffer from serious inefficiencies associated with under-utilization due to demand patterns, engineering design and load following approaches in use today. These grids consume much of the world’s energy and represent a large carbon footprint. From material utilization perspectives significant hardware is manufactured and installed for this infrastructure often to be used at less than 20-40% of its operational capacity for most of its lifetime. These inefficiencies lead engineers to require additional grid support and conventional generation capacity additions when renewable technologies (such as solar and wind) and electric vehicles are to be added to the utility demand/supply mix. Using actual data from the PJM [PJM 2009] the work shows that consumer load management, real time price signals, sensors and intelligent demand/supply control offer a compelling path forward to increase the efficient utilization and carbon footprint reduction of the world’s grids. Underutilization factors from many distribution companies indicate that distribution feeders are often operated at only 70-80% of their peak capacity for a few hours per year, and on average are loaded to less than 30-40% of their capability. By creating strong societal connections between consumers and energy providers technology can radically change this situation. Intelligent deployment of smart sensors, smart electric vehicles, consumer-based load management technology very high saturations of intermittent renewable energy supplies can be effectively controlled and dispatched to increase the levels of utilization of existing utility distribution, substation, transmission, and generation equipment. The strengthening of these technology, society and consumer relationships requires rapid dissemination of knowledge (real time prices, costs & benefit sharing, demand response requirements) in order to incentivize behaviors that can increase the effective use of technological equipment that represents one of the largest capital assets modern society has created.
Resumo:
We describe a recent offering of a linear systems and signal processing course for third-year electrical and computer engineering students. This course is a pre-requisite for our first digital signal processing course. Students have traditionally viewed linear systems courses as mathematical and extremely difficult. Without compromising the rigor of the required concepts, we strived to make the course fun, with application-based hands-on laboratory projects. These projects can be modified easily to meet specific instructors' preferences. © 2011 IEEE.(17 refs)
Resumo:
A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.
Resumo:
The main objective of this paper is to discuss various aspects of implementing a specific intrusion-detection scheme on a micro-computer system using fixed-point arithmetic. The proposed scheme is suitable for detecting intruder stimuli which are in the form of transient signals. It consists of two stages: an adaptive digital predictor and an adaptive threshold detection algorithm. Experimental results involving data acquired via field experiments are also included.
Resumo:
The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)
Resumo:
Analog filters and direct digital filters are implemented using digital signal processing techniques. Specifically, Butterworth, Elliptic, and Chebyshev filters are implemented using the Motorola 56001 Digital Signal Processor by the integration of three software packages: MATLAB, C++, and Motorola's Application Development System. The integrated environment allows the novice user to design a filter automatically by specifying the filter order and critical frequencies, while permitting more experienced designers to take advantage of MATLAB's advanced design capabilities. This project bridges the gap between the theoretical results produced by MATLAB and the practicalities of implementing digital filters using the Motorola 56001 Digital Signal Processor. While these results are specific to the Motorola 56001 they may be extended to other digital signal processors. MATLAB handles the filter calculations, a C++ routine handles the conversion to assembly code, and the Motorola software compiles and transmits the code to the processor
Resumo:
We present a new approach for corpus-based speech enhancement that significantly improves over a method published by Xiao and Nickel in 2010. Corpus-based enhancement systems do not merely filter an incoming noisy signal, but resynthesize its speech content via an inventory of pre-recorded clean signals. The goal of the procedure is to perceptually improve the sound of speech signals in background noise. The proposed new method modifies Xiao's method in four significant ways. Firstly, it employs a Gaussian mixture model (GMM) instead of a vector quantizer in the phoneme recognition front-end. Secondly, the state decoding of the recognition stage is supported with an uncertainty modeling technique. With the GMM and the uncertainty modeling it is possible to eliminate the need for noise dependent system training. Thirdly, the post-processing of the original method via sinusoidal modeling is replaced with a powerful cepstral smoothing operation. And lastly, due to the improvements of these modifications, it is possible to extend the operational bandwidth of the procedure from 4 kHz to 8 kHz. The performance of the proposed method was evaluated across different noise types and different signal-to-noise ratios. The new method was able to significantly outperform traditional methods, including the one by Xiao and Nickel, in terms of PESQ scores and other objective quality measures. Results of subjective CMOS tests over a smaller set of test samples support our claims.
Resumo:
Background: In protein sequence classification, identification of the sequence motifs or n-grams that can precisely discriminate between classes is a more interesting scientific question than the classification itself. A number of classification methods aim at accurate classification but fail to explain which sequence features indeed contribute to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the sequence landscape and to identify class-specific motifs that discriminate between classes during classification. Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally present or absent in other classes. In this study, we present a new substitution-based scoring function for identifying discriminative n-grams that are highly specific to a class. Results: We present a scoring function based on discriminative n-grams that can effectively discriminate between classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset, the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method known as Wordspy. We have validated our enriched set of class-specific motifs against the functionally important motifs obtained from the NLSdb, Prosite and ELM databases. We demonstrate that this method is very generic; thus can be widely applied to detect class-specific motifs in many protein sequence classification tasks. Conclusion: The proposed scoring function and methodology is able to identify class-specific motifs using discriminative n-grams derived from the protein sequences. The implementation of amino acid substitution scores for similarity detection, and the dampening factor to normalize the unbalanced datasets have significant effect on the performance of the scoring function. Our multipronged validation tests demonstrate that this method can detect class-specific motifs from a wide variety of protein sequence classes with a potential application to detecting proteome-specific motifs of different organisms.
Resumo:
An introductory course in probability and statistics for third-year and fourth-year electrical engineering students is described. The course is centered around several computer-based projects that are designed to achieve two objectives. First, the projects illustrate the course topics and provide hands-on experience for the students. The second and equally important objective of the projects is to convey the relevance and usefulness of probability and statistics to practical problems that undergraduate students can appreciate. The benefit of this course as to motivate electrical engineering students to excel in the study of probability concepts, instead of viewing the subject as one more course requirement toward graduation. The authors co-teach the course, and MATLAB is used for mast of the computer-based projects