2 resultados para Compression Metric

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed imaging directly correlates the propagation of a particular shear band with mechanical measurements during uniaxial compression of a bulk metallic glass. Imaging shows shear occurs simultaneously over the entire shear plane, and load data, synced and time-stamped to the same clock as the camera, reveal that shear sliding is coincident with the load drop of each serration. Digital image correlation agrees with these results. These data demonstrate that shear band sliding occurs with velocities on the order of millimeters per second. Fracture occurs much more rapidly than the shear banding events, thereby readily leading to melting on fracture surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant mechanisms with evenly distributed stresses have better load-bearing ability and larger range of motion than mechanisms with compliance and stresses lumped at flexural hinges. In this paper, we present a metric to quantify how uniformly the strain energy of deformation and thus the stresses are distributed throughout the mechanism topology. The resulting metric is used to optimize cross-sections of conceptual compliant topologies leading to designs with maximal stress distribution. This optimization framework is demonstrated for both single-port mechanisms and single-input single-output mechanisms. It is observed that the optimized designs have lower stresses than their nonoptimized counterparts, which implies an ability for single-port mechanisms to store larger strain energy, and single-input single-output mechanisms to perform larger output work before failure.