9 resultados para Collection and transportation of municipal solid waste

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a broad overview of recent trends in solid waste and recycling, related public policy issues, and the economics literature devoted to these topics. Public attention to solid waste and recycling has increased dramatically over the past decade both in the United States and in Europe. In response, economists have developed models to help policy makers choose the efficient mix of policy levers to regulate solid waste and recycling activities. Economists have also employed different kinds of data to estimate the factors that contribute to the generation of residential solid waste and recycling and to estimate the effectiveness of many of the policy options employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper estimates cost functions for both municipal solid waste collection and disposal services and curbside recycling programs. Cost data are obtained from a national survey of randomly selected municipalities. Results suggest, perhaps unsurprisingly, that both marginal and average costs of recycling systems exceed those of waste collection and disposal systems. Economies of scale are estimated for all observed quantities of waste collection and disposal. Economies of scale for recycling disappear at high levels of recycling - marginal and average cost curves for recycling take on the usual U-shape. Waste and recycling costs are also estimated as functions of factor costs and program attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disposal of municipal solid waste is believed to emit foul odor, threaten groundwater, and increase road congestion. As remote regional landfills have replaced local town dumps, these costs are no longer internalized by garbage-producing households or their municipalities. Instead, rural property owners located adjacent to large regional landfills and along the roadways accessing those landfills bear the external costs of garbage disposal. This paper uses a comprehensive nine-year panel data set of aggregated state data to empirically examine why 8,937 municipalities continue to operate costly recycling programs designed to reduce the external costs of garbage disposal. Results suggest that local tastes for recycling drive municipal decisions. If household preferences for recycling are short lived, then we can expect a future decrease in the number of municipal recycling programs. Recent data indicate the number of recycling programs in operation in the U.S. has indeed fallen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaerobic digestion of food scraps has the potential to accomplish waste minimization, energy production, and compost or humus production. At Bucknell University, removal of food scraps from the waste stream could reduce municipal solid waste transportation costs and landfill tipping fees, and provide methane and humus for use on campus. To determine the suitability of food waste produced at Bucknell for high-solids anaerobic digestion (HSAD), a year-long characterization study was conducted. Physical and chemical properties, waste biodegradability, and annual production of biodegradable waste were assessed. Bucknell University food and landscape waste was digested at pilot-scale for over a year to test performance at low and high loading rates, ease of operation at 20% solids, benefits of codigestion of food and landscape waste, and toprovide digestate for studies to assess the curing needs of HSAD digestate. A laboratory-scale curing study was conducted to assess the curing duration required to reduce microbial activity, phytotoxicity, and odors to acceptable levels for subsequent use ofhumus. The characteristics of Bucknell University food and landscape waste were tested approximately weekly for one year, to determine chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and biodegradability (from batch digestion studies). Fats, oil, and grease and total Kjeldahl nitrogen were also tested for some food waste samples. Based on the characterization and biodegradability studies, Bucknell University dining hall food waste is a good candidate for HSAD. During batch digestion studies Bucknell University food waste produced a mean of 288 mL CH4/g COD with a 95%confidence interval of 0.06 mL CH4/g COD. The addition of landscape waste for digestion increased methane production from both food and landscape waste; however, because the landscape waste biodegradability was extremely low the increase was small.Based on an informal waste audit, Bucknell could collect up to 100 tons of food waste from dining facilities each year. The pilot-scale high-solids anaerobic digestion study confirmed that digestion ofBucknell University food waste combined with landscape waste at a low organic loading rate (OLR) of 2 g COD/L reactor volume-day is feasible. During low OLR operation, stable reactor performance was demonstrated through monitoring of biogas production and composition, reactor total and volatile solids, total and soluble chemical oxygendemand, volatile fatty acid content, pH, and bicarbonate alkalinity. Low OLR HSAD of Bucknell University food waste and landscape waste combined produced 232 L CH4/kg COD and 229 L CH4/kg VS. When OLR was increased to high loading (15 g COD/L reactor volume-day) to assess maximum loading conditions, reactor performance became unstable due to ammonia accumulation and subsequent inhibition. The methaneproduction per unit COD also decreased (to 211 L CH4/kg COD fed), although methane production per unit VS increased (to 272 L CH4/kg VS fed). The degree of ammonia inhibition was investigated through respirometry in which reactor digestate was diluted and exposed to varying concentrations of ammonia. Treatments with low ammoniaconcentrations recovered quickly from ammonia inhibition within the reactor. The post-digestion curing process was studied at laboratory-scale, to provide a preliminary assessment of curing duration. Digestate was mixed with woodchips and incubated in an insulated container at 35 °C to simulate full-scale curing self-heatingconditions. Degree of digestate stabilization was determined through oxygen uptake rates, percent O2, temperature, volatile solids, and Solvita Maturity Index. Phytotoxicity was determined through observation of volatile fatty acid and ammonia concentrations.Stabilization of organics and elimination of phytotoxic compounds (after 10–15 days of curing) preceded significant reductions of volatile sulfur compounds (hydrogen sulfide, methanethiol, and dimethyl sulfide) after 15–20 days of curing. Bucknell University food waste has high biodegradability and is suitable for high-solids anaerobic digestion; however, it has a low C:N ratio which can result in ammonia accumulation under some operating conditions. The low biodegradability of Bucknell University landscape waste limits the amount of bioavailable carbon that it can contribute, making it unsuitable for use as a cosubstrate to increase the C:N ratio of food waste. Additional research is indicated to determine other cosubstrates with higher biodegradabilities that may allow successful HSAD of Bucknell University food waste at high OLRs. Some cosubstrates to investigate are office paper, field residues, or grease trap waste. A brief curing period of less than 3 weeks was sufficient to produce viable humus from digestate produced by low OLR HSAD of food and landscape waste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economic models have demonstrated the efficiency of curbside collection taxes. This paper demonstrates that such efficiencies disappear in economies with centralized recycling options - where recyclable materials can be removed from the waste stream either by households or at a centralized recycling facility. In such economies a curbside garbage tax not only fails to encourage the centralized recycler to internalize the external costs of waste disposal, but introduces inefficiencies to the cost-minimizing mix of household and centralized recycling efforts. The optimal waste policy is a tax assessed further downstream at the landfill rather than at the curb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United States disposes roughly 60% of the municipal solid waste it generates each year in solid waste disposal facilities, commonly known as landfills. Hedonic pricing studies have estimated the external costs of landfills on neighboring housing markets, but the literature is silent on what happens to property values after the landfill closes. Original housing price data collected both before and after a landfill closure are used to estimate how a landfill closure affects neighboring property values. Results of both a hedonic pricing model and repeat-sales estimator are used in the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are a topic of high interest in the scientific community right now because of their ability to efficiently convert chemical energy into electrical energy. This thesis is focused on solid oxide fuel cells (SOFCs) because of their fuel flexibility, and is specifically concerned with the anode properties of SOFCs. The anodes are composed of a ceramic material (yttrium stabilized zirconia, or YSZ), and conducting material. Recent research has shown that an infiltrated anode may offer better performance at a lower cost. This thesis focuses on the creation of a model of an infiltrated anode that mimics the underlying physics of the production process. Using the model, several key parameters for anode performance are considered. These are the initial volume fraction of YSZ in the slurry before sintering, the final porosity of the composite anode after sintering, and the size of the YSZ and conducting particles in the composite. The performance measures of the anode, namely percolation threshold and effective conductivity, are analyzed as a function of these important input parameters. Simple two and three-dimensional percolation models are used to determine the conditions at which the full infiltrated anode would be investigated. These more simple models showed that the aspect ratio of the anode has no effect on the threshold or effective conductivity, and that cell sizes of 303 are needed to obtain accurate conductivity values. The full model of the infiltrated anode is able to predict the performance of the SOFC anodes and it can be seen that increasing the size of the YSZ decreases the percolation threshold and increases the effective conductivity at low conductor loadings. Similar trends are seen for a decrease in final porosity and a decrease in the initial volume fraction of YSZ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid oxide fuel cells (SOFCs) provide a potentially clean way of using energy sources. One important aspect of a functioning fuel cell is the anode and its characteristics (e.g. conductivity). Using infiltration of conductor particles has been shown to be a method for production at lower cost with comparable functionality. While these methods have been demonstrated experimentally, there is a vast range of variables to consider. Because of the long time for manufacture, a model is desired to aid in the development of the desired anode formulation. This thesis aims to (1) use an idealized system to determine the appropriate size and aspect ratio to determine the percolation threshold and effective conductivity as well as to (2) simulate the infiltrated fabrication method to determine the effective conductivity and percolation threshold as a function of ceramic and pore former particle size, particle fraction and the cell¿s final porosity. The idealized system found that the aspect ratio of the cell does not affect the cells functionality and that an aspect ratio of 1 is the most efficient computationally to use. Additionally, at cell sizes greater than 50x50, the conductivity asymptotes to a constant value. Through the infiltrated model simulations, it was found that by increasing the size of the ceramic (YSZ) and pore former particles, the percolation threshold can be decreased and the effective conductivity at low loadings can be increased. Furthermore, by decreasing the porosity of the cell, the percolation threshold and effective conductivity at low loadings can also be increased