3 resultados para Classical formulation
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Load flow visualization, which is an important step in structural and machine assembly design may aid in the analysis and eventual synthesis of compliant mechanisms. In this paper, we present a kineto-static formulation to visualize load flow in compliant mechanisms. This formulation uses the concept of transferred forces to quantify load flow from input to the output of a compliant mechanism. The magnitude and direction of load flow in the constituent members enables functional decomposition of the compliant mechanism into (i) Constraints (C): members that are constrained to deform in a particular direction and (ii) Transmitters (T): members that transmit load to the output. Furthermore, it is shown that a constraint member and an adjacent transmitter member can be grouped together to constitute a fundamental building block known as an CT set whose load flow behavior is maximally decoupled from the rest of the mechanism. We can thereby explain the deformation behavior of a number of compliant mechanisms from literature by visualizing load flow, and identifying building blocks.
Resumo:
A conjecture by Harder shows a surprising congruence between the coefficients of “classical” modular forms and the Hecke eigenvalues of corresponding Siegel modular forms, contigent upon “large primes” dividing the critical values of the given classical modular form. Harder’s Conjecture has already been verified for one-dimensional spaces of classical and Siegel modular forms (along with some two-dimensional cases), and for primes p 37. We verify the conjecture for higher-dimensional spaces, and up to a comparable prime p.