10 resultados para Civil engineering|Engineering, Sanitary and Municipal|Petroleum engineering|Environmental science

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land surface temperature (LST) plays a key role in governing the land surface energy budget, and measurements or estimates of LST are an integral part of many land surface models and methods to estimate land surface sensible heat (H) and latent heat fluxes. In particular, the LST anchors the potential temperature profile in Monin-Obukhov similarity theory, from which H can be derived. Brutsaert has made important contributions to our understanding the nature of surface temperature measurements as well as the practical but theoretically sound use of LST in this framework. His work has coincided with the wide-spread availability of remotely sensed LST measurements. Use of remotely sensed LST estimates inevitably involves complicating factors, such as: varying spatial and temporal scales in measurements, theory, and models; spatial variability of LST and H; the relationship between measurements of LST and the temperature felt by the atmosphere; and the need to correct satellite-based radiometric LST measurements for the radiative effects of the atmosphere. This paper reviews the progress made in research in these areas by tracing and commenting on Brutsaert's contributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of human-structure interaction on the dynamic performance of occupied structures have long been observed. The inclusion of the effects of human-structure interaction is important to ensure that the dynamic response of a structure is not overestimated. Previous observations, both in service and in the laboratory, have yielded results indicating that the effects are dependent on the natural frequency of the structure, the posture of the occupants, and the mass ratio of the occupants to the structure. These results are noteworthy, but are limited in their application,because the data are sparse and are only pertinent to a specific set of characteristics identified in a given study. To examine these characteristics simultaneously and consistently, an experimental test structure was designed with variable properties to replicate a variety of configurations within a controlled setting focusing on the effects of passive occupants. Experimental modal analysis techniques were employed to both the empty and occupied conditions of the structure and the dynamic properties associated with each condition were compared. Results similar to previous investigations were observed, including both an increase and a decrease in natural frequency of the occupied structure with respect to the empty structure, as well as the identification of a second mode of vibration. The damping of the combined system was higher for all configurations. Overall, this study provides a broad data set representing a wide array of configurations. The experimental results of this study were used to assess current recommendations for the dynamic properties of a crowd to analytically predict the effects of human-structure interaction. The experimental results were used to select a set of properties for passive, standing occupants and develop a new model that can more accurately represent the behavior of the human-structure system as experimentally measured in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines the role of domestic spaces and images in mid-nineteenth-century science writing for children. Analyses of John Mill’s The Fossil Spirit, A.L.O.E.’s Fairy Frisket, John Cargill Brough’s The Fairy Tales of Science, Annie Carey’s “Autobiography of a Lump of Coal,” and an assortment of boxed games reveal a variety of ways in which overwhelming scientific concepts are domesticated. Moreover, juvenile science literature contributes this appeasing domestication to the broader scientific discourse, consistently framing natural history in terms of human experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury. Methods: Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007. Results: In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR)=0.03; 95% CI: 0.004- 0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR=0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR=0.53; 95% CI=0.10-2.68). Impact on Industry: This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u (*)/u (*R) , where u (*) is the friction velocity and u (*R) is the friction velocity from the uniform building height case, is expressed well as an algebraic function of lambda and sigma (h) /h (m) , where lambda is the frontal area index, sigma (h) is the standard deviation of the building height, and h (m) is the mean building height. The simulations also resulted in a simple algebraic relation for z (0)/z (0R) as a function of lambda and sigma (h) /h (m) , where z (0) is the aerodynamic roughness length and z (0R) is z (0) found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Previous research conducted in the late 1980s suggested that vehicle impacts following an initial barrier collision increase severe occupant injury risk. Now over 25years old, the data are no longer representative of the currently installed barriers or the present US vehicle fleet. The purpose of this study is to provide a present-day assessment of secondary collisions and to determine if current full-scale barrier crash testing criteria provide an indication of secondary collision risk for real-world barrier crashes. Methods: To characterize secondary collisions, 1,363 (596,331 weighted) real-world barrier midsection impacts selected from 13years (1997-2009) of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS) were analyzed. Scene diagram and available scene photographs were used to determine roadside and barrier specific variables unavailable in NASS/CDS. Binary logistic regression models were developed for second event occurrence and resulting driver injury. To investigate current secondary collision crash test criteria, 24 full-scale crash test reports were obtained for common non-proprietary US barriers, and the risk of secondary collisions was determined using recommended evaluation criteria from National Cooperative Highway Research Program (NCHRP) Report 350. Results: Secondary collisions were found to occur in approximately two thirds of crashes where a barrier is the first object struck. Barrier lateral stiffness, post-impact vehicle trajectory, vehicle type, and pre-impact tracking conditions were found to be statistically significant contributors to secondary event occurrence. The presence of a second event was found to increase the likelihood of a serious driver injury by a factor of 7 compared to cases with no second event present. The NCHRP Report 350 exit angle criterion was found to underestimate the risk of secondary collisions in real-world barrier crashes. Conclusions: Consistent with previous research, collisions following a barrier impact are not an infrequent event and substantially increase driver injury risk. The results suggest that using exit-angle based crash test criteria alone to assess secondary collision risk is not sufficient to predict second collision occurrence for real-world barrier crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research conducted in the late 1980’s suggested that vehicle impacts following an initial barrier collision increase severe occupant injury risk. Now over twenty-five years old, the data used in the previous research is no longer representative of the currently installed barriers or US vehicle fleet. The purpose of this study is to provide a present-day assessment of secondary collisions and to determine if full-scale barrier crash testing criteria provide an indication of secondary collision risk for real-world barrier crashes. The analysis included 1,383 (596,331 weighted) real-world barrier midsection impacts selected from thirteen years (1997-2009) of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS). For each suitable case, the scene diagram and available scene photographs were used to determine roadside and barrier specific variables not available in NASS/CDS. Binary logistic regression models were developed for second event occurrence and resulting driver injury. Barrier lateral stiffness, post-impact vehicle trajectory, vehicle type, and pre-impact tracking conditions were found to be statistically significant contributors toward secondary event occurrence. The presence of a second event was found to increase the likelihood of a serious driver injury by a factor of seven compared to cases with no second event present. Twenty-four full-scale crash test reports were obtained for common non-proprietary US barriers, and the risk of secondary collisions was determined using recommended evaluation criteria from NCHRP Report 350. It was found that the NCHRP Report 350 exit angle criterion alone was not sufficient to predict second collision occurrence for real-world barrier crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.