3 resultados para Challenges of VET

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of some Argentine workers to the 2001 crisis of neoliberalism gave rise to a movement of worker-recovered enterprises (empresas recuperadas por sus trabajadores or ERTs). The ERTs have emerged as former employees took over the control of generally fraudulently bankrupt factories and enterprises. The analysis of the ERT movement within the neoliberal global capitalist order will draw from William Robinson’s (2004) neo-Gramscian concept of hegemony. The theoretical framework of neo-Gramscian hegemony will be used in exposing the contradictions of capitalism on the global, national, organizational and individual scales and the effects they have on the ERT movement. The ERT movement has demonstrated strong level of resilience, despite the numerous economic, social, political and cultural challenges and limitations it faces as a consequence of the implementation of neoliberalism globally. ERTs have shown that through non-violent protests, democratic principles of management and social inclusion, it is possible to start constructing an alternative social order that is based on the cooperative principles of “honesty, openness, social responsibility and caring for others” (ICA 2007) as opposed to secrecy, exclusiveness, individualism and self-interestedness. In order to meet this “utopian” vision, it is essential to push the limits of the possible within the current social order and broaden the alliance to include the organized members of the working class, such as the members of trade unions, and the unorganized, such as the unemployed and underemployed. Though marginal in number and size, the members of ERTs have given rise to a model that is worth exploring in other countries and regions burdened by the contradictory workings of capitalism. Today, ERTs serve as living proofs that workers too are capable of successfully running businesses, not capitalists alone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a need for biomethane capture and carbon dioxide sequestration to mitigate evident global climate change. This research work investigated the potential for microalgae to remove CO2 from biogas as a biotechnical method for upgrading the thermal value for subsequent compression, liquification, or introduction to natural gas pipelines. Because biogas is largely methane, the effect of high methane environments on mixed microalgae was explored and found that specific carbon utilization rates were not statistically different when microalgae were exposed to biogas environments (70% v/v CH4) , relative to high CO2 environment. The uses of conventional bubbled column photobioreactors (PBR) were assessed for CO2 removal and subsequent CH4 enrichment. A continuously-bubbled biogas PBR (cB-PBR5) and intermittently-bubbled biogas PBR (iB-PBR) experienced CO2 loading rates of about 1664 and 832 mg C/L*day and showed 30.0 and 60.1 % carbon removal, respectively. However, a lack of biogas enrichment and issues associated growth inhibition due to high CO2 environments as well as stripping the dissolved gases, namely oxygen and nitrogen, from the bulk liquid and introduction to the outlet gas prompted the consideration for gas/liquid separation using nonporous hollow-fiber (HF) membranes for CO2 transfer. The potential for two non-porous HF membrane materials [polydimethylsiloxane (PDMS) and composite polyurethane (PU)] were modeled along fiber length using a mechanistic model based on polymeric material transport properties (Gilmore et al., 2009). Based on a high CO2:CH4 permeability selectivity for PU of 76.2 the model predicted gas enrichment along an 8.5 cm fiber length. Because PDMS permeability selectivity is low (3.5), evident gas transfer was not predicated along a 34.3 cm length. Both of these HF materials were implemented in hollow-fiber membrane-carbonated biofilm (HFMcB) PBRs for microalgal-mediated biogas enrichment. Phototrophic biofilm colonization occurred on the membrane, where CO2 concentration was greatest. The presence of a biofilm demonstrated greater resiliency to high CO2 environments, compared to the conventional PBRs. However, as the PDMS model predicted, the PDMS HFMcBs did not demonstrate gas enrichment. These reactors received CO2 loading rates of 200 mg C/L*day based on PDMS permeability flux and showed approximately 65% removal of the total C transferred across the membrane. Thus, the HFMcBs demonstrated controlled carbonation of the bulk liquid via a nonporous HF membrane. Likewise, the experimental PU HFMcB did not show gas enrichment yet this result should be further explored due to the high permeability selectivity of the polymeric material. Chemical stratifications, namely pH and dissolved O2, present in a PDMS membrane-carbonated biofilm were analyzed using electrochemical microsensors. Results indicated that high DO (20 mg L-1) exists at surface of the biofilm where light availability is greatest and low pH microenvironments (pH=5.40) exist deep in the biofilm where the diffusive flux of CO2 drives transfer through the biofilm. The presence of a 400-600 ¿m liquid phase boundary layer was evident from microsensor profiles. Cryosectioning of the biofilm samples showed the biofilm to be approximately 1.17 ± 0.07 mm thick, suggesting that the high localized concentration of biomass associated with the phototrophic biofilm aided in overcoming inhibition in a microenvironment dominated by CO2(aq). Challenges of biofilm detachment and PBR fouling as well as microalgal growth inhibition in the presence of high CO2 content remain for applications of microalgae for biogas enrichment.