5 resultados para Cascade mountains
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Detrital zircon and metamorphic monazite ages from the Picuris Mountains, north central New Mexico, were used to confirm the depositional age of the Marquenas Formation, to document the depositional age of the Vadito Group, and to constrain the timing of metamorphism and deformation in the region. Detrital zircon 207Pb/206Pb ages were obtained with the LA-MC-ICPMS from quartzites collected from the type locality of the Marquenas Formation exposed at Cerro de las Marquenas, and from the lower Vadito Group in the southern and eastern Picuris Mountains. The Marquenas Formation sample yields 113 concordant ages including a Mesoproterozoic age population with four grains ca. 1470 Ga, a broad Paleoproterozoic age peak at 1695 Ma, and minor Archean age populations. Data confirm recent findings of Mesoproterozoic detrital zircons reported by Jones et al. (2011), and show that the Marquenas Formation is the youngest lithostratigraphic unit in the Picuris Mountains. Paleoproterozoic and Archean detrital grains in the Marquenas Formation are likely derived from local recycled Vadito Group rocks and ca. 1.75 Ga plutonic complexes, and ca. 1.46 detrital zircons were most likely derived from exposed Mesoproterozoic plutons south of the Picuris. Ninety-five concordant grains from each of two Vadito Group quartzites yield relatively identical unimodal Paleoproterozoic age distributions, with peaks at 1713-1707 Ma. Eastern exposures of quartzite mapped as Marquenas Formation yield detrital zircon age patterns and metamorphic mineral assemblages that are nearly identical to the Vadito Group. On this basis, I tentatively assigned the easternmost quartzite to the Vadito Group. Zircon grains in all samples show low U/Th ratios, welldeveloped concentric zoning, and no evidence of metamorphic overgrowth events, consistent with an igneous origin. North-directed paleocurrent indicators, such as tangential crossbeds (Soegaard & Eriksson, 1986) and other primary sedimentary structures, are preserved in the Marquenas Formation quartzite. Together with pebble-toboulder metaconglomerates in the Marquenas, these observations suggest that this formation was deposited in a braided alluvial plain environment in response to syntectonic uplift to the south of the Picuris Mountains. Metamorphic monazite from two Vadito Group quartzite samples were analyzed with an electron microprobe (EMP). Elemental compositional variation with respect to Th and Y define core and rim domains in monazite grains, and show lower concentrations of Th (1.46-1.52 wt%) and Y (0.67 wt%) in the cores, and higher concentrations of Th (1.98 wt%) and Y (1.06 wt%) in the rims. Results show that Mesoproterozoic core and rim ages from five grains overlap within uncertainty, ranging from 1395-1469 Ma with an average age of 1444 Ma. This 1.44 Ga average age is the dominant timing of metamorphic monazite growth in the region, and represents the timing of metamorphism experienced by the region. An older 1630 Ma core observed in sample CD10-12 may be interpreted as a result of low temperature metamorphism in lower Vadito Group rocks due to heat from ca. 1.65 Ga granitic intrusions. Core ages ca. 1.5 Ga are likely due to a mixing age of two different age domains during analyses. Confirmed sedimentation at 1.48-1.45 Ga and documented mid-crustal regional metamorphism in northern New Mexico ca. 1.44-1.40 are likely associated with a Mesoproterozoic orogenic event.
Resumo:
Icy debris fans have are newly-described landforms (Kochel and Trop, 2008 and 2012) as landforms developed immediately after deglaciation on Earth and similar features have been observed on Mars. Subsurface characteristics of Icy debris fans have not been previously investigated. Ground penetrating radar (GPR) was used to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans (Kochel and Trop, 2008 and 2012) which below the Nabesna ice cap and on top of the McCarthy Creek Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. Their results showed that the fan's composition is primarily influenced by the type and frequency of depositional processes that supply the fan. Photographic studies show that the East Fan receives far more ice and snow avalanches whereas the Middle and West Fans receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and Wide-angle reflection and refraction (WARR) surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Creek Glacier. All GPR surveys were collected in July of 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Creek Glacier in order to investigate the relationship between the three features. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The depth to these reflections in the subsurface requires knowledge of the velocity of the subsurface. To find the velocity of the subsurface eight WARR surveys collected on the fans and on the McCarthy Creek glacier to provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more reflections in their profiles compared to profiles done on the McCarthy Creek Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are inferred to be produced by the alternating layers of stratified ice and lithic-rich layers. The GPR profiles on the West and Middle Fans show the shallow subsurface being dominated by lenticular reflections interpreted to be consistent with the shape of surficial deposits. The West Fan is distinguished from the Middle Fan by the nature of its reflections patterns and thicknesses of reflection packages that clearly shows the Middle fan with a greater thickness. The changes in subsurface reflections between the Middle and West Fans as well as the McCarthy Creek Glacier are thought to reflect the type and frequency of depositional processes and surrounding bedrock and talus slopes.
Resumo:
Two competing models exist for the formation of the Pennsylvania salient, a widely studied area of pronounced curvature in the Appalachian mountain belt. The viability of these models can be tested by compiling and analyzing the patterns of structures within the general hinge zone of the Pennsylvania salient. One end-member model suggests a NW-directed maximum shortening direction and no rotation through time in the culmination. An alternative model requires a two-phase development of the culmination involving NNW-directed maximum shortening overprinted by WNW-directed maximum shortening. Structural analysis at 22 locations throughout the Valley and Ridge and southern Appalachian Plateau Provinces of Pennsylvania are used to constrain orientations of the maximum shortening direction and establish whether these orientations have rotated during progressive deformation in the Pennsylvania salient's hinge. Outcrops of Paleozoic sedimentary rocks contain several orders of folds, conjugate faults, steeply dipping strike-slip faults, joints, conjugate en echelon gash vein arrays, spaced cleavage, and grain-scale finite strain indicators. This suite of structures records a complex deformation history similar to the Bear Valley sequence of progressive deformation. The available structural data from the Juniata culmination do not show a consistent temporal rotation of shortening directions and generally indicate uniform,
Resumo:
Paleogene sedimentary rocks of the Arkose Ridge Formation (Talkeetna Mountains, Alaska) preserve a record of a fluvial-lacustrine depositional environment and its forested ecosystem in an active basin among the convergent margin tectonic processes that shaped southern Alaska. An -800 m measured succession at Box Canyon indicates braid-plain deposition with predominantly gravelly deposits low in the exposure to sandy and muddy facies associations below an overlying lava flow sequence. U-Pb geochronology on zircons from a tuff and a sandstone within the measured section, as well as an Ar/Ar date from the overlying lava constrain the age of the sedimentary succession to between similar to 59 Ma and 48 Ma Fossil plant remains occur throughout the Arkose Ridge Formation as poorly-preserved coalified woody debris and fragmentary leaf impressions. At Box Canyon, however, a thin la-custrine depositional lens of rhythmically laminated mudrocks yielded fish fossils and a well-preserved floral assemblage including foliage and reproductive organs representing conifers, sphenopsids, monocots, and dicots. Leaf physiognomic methods to estimate paleoclimate were applied to the dicot leaf collection and indicate warm temperate paleotemperatures (-11-15 +/- -4 degrees C MAT) and elevated paleoprecipitation (-120 cm/yr MAP) estimates as compared to modem conditions; results that are parallel with previously published estimates from the partly coeval Chickaloon Formation deposited in more distal depositional environments in the same basin. The low abundance of leaf herbivory in the Box Canyon dicot assemblage (-9% of leaves damaged) is also similar to the results from assemblages in the meander-plain depositional systems of the Chickaloon. This new suite of data informs models of the tectonostratigraphic evolution of southern Alaska and the developing understanding of terrestrial paleoecology and paleoclimate at high latitudes during the Late Paleocene-Early Eocene greenhouse climate phase. (c) 2014 Elsevier B.V. All rights reserved.