3 resultados para Bridge circuits

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In my thesis, I use literary criticism, knowledge of Russian, and elements of translation theory to study the seminal poet of the Russian literary tradition ¿ Aleksandr Pushkin. In his most famous work, Eugene Onegin, Pushkin explores the cultural and linguistic divide in place at the turn of the 19th century in Russia. Pushkin stands on the peripheries of several colliding worlds; never fully committing to any of them, he acts as a translator between various realms of the 19th-century Russian experience. Through his narrator, he adeptly occupies the voices, styles, and modes of expression of various characters, displaying competency in all realms of Russian life. In examining Tatiana, his heroine, the reader witnesses her development as analogous to the author¿s. At the center of the text stands the act of translation itself: as the narrator ¿translates¿ Tatiana¿s love letter from French to Russian, the author-narrator declares his function as a mediator, not only between languages, but also between cultures, literary canons, social classes, and identities. Tatiana, as both main character and the narrator¿s muse, emerges as the most complex figure in the novel, and her language manifests itself as the most direct and capable of sincerity in the novel. The elements of Russian folklore that are incorporated into her language speak to Pushkin¿s appreciation for the rich Russian folklore tradition. In his exaltation of language considered to be ¿common¿, ¿low¿ speech is juxtaposed with its lofty counterpart; along the way, he incorporates myriad foreign borrowings. An active creator of Russia¿s new literary language, Pushkin traverses linguistic boundaries to synthesize a fragmented Russia. In the process, he creates a work so thoroughly tied to language and entrenched in complex cultural traditions that many scholars have argued for its untranslatability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few decades, integrated circuits have become a major part of everyday life. Every circuit that is created needs to be tested for faults so faulty circuits are not sent to end-users. The creation of these tests is time consuming, costly and difficult to perform on larger circuits. This research presents a novel method for fault detection and test pattern reduction in integrated circuitry under test. By leveraging the FPGA's reconfigurability and parallel processing capabilities, a speed up in fault detection can be achieved over previous computer simulation techniques. This work presents the following contributions to the field of Stuck-At-Fault detection: We present a new method for inserting faults into a circuit net list. Given any circuit netlist, our tool can insert multiplexers into a circuit at correct internal nodes to aid in fault emulation on reconfigurable hardware. We present a parallel method of fault emulation. The benefit of the FPGA is not only its ability to implement any circuit, but its ability to process data in parallel. This research utilizes this to create a more efficient emulation method that implements numerous copies of the same circuit in the FPGA. A new method to organize the most efficient faults. Most methods for determinin the minimum number of inputs to cover the most faults require sophisticated softwareprograms that use heuristics. By utilizing hardware, this research is able to process data faster and use a simpler method for an efficient way of minimizing inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.