8 resultados para Block Polymers

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers with mid-chain alkoxyamine functionality were synthesized by activating monohalogenated polymers in the presence of nitroso or nitrone radical traps. The resulting polymers were either polystyrene (PSt) homopolymers with a mid-chain alkoxyamine or PSt-poly(methyl acrylate) (PMA) diblock copolymers with an alkoxyamine unit at the junction between the segments. Monohalogenated polymers where synthesized by atom transfer radical polymerization (ATRP) and were then reacted to form polymer radicals in the presence of a radical trap, nitrone or nitroso. When only polystyrene radicals were reacted with the radical trap a dimer was formed with an alkoxyamine functionality in the center of the polymer chain. This functionality allowed the polymer chain to be cleaved in order to visualize the extent of the alkoxyamine functionality incorporation into the polymer chains. It was found that near quantitative alkoxyamine mid-chain functionality could be achieved by activating the PStBr in the presence of 10 equivalents of nitrone, 5 equivalents of copper bromide, and 2 equivalents of copper metal. Further reducing the amount of copper metal led to incomplete coupling, while increasing the equivalents beyond 2 generated polymer dimers with less than quantitative mid-chain functionality. Monochlorinated polystyrene (PStCl) precursors gave much poorer coupling results compared to reactions with PStBr, which is consistent with the stronger C-Cl bond resisting activation and the formation of the polystyryl radicals. When poly (methyl acrylate) (PMABr) is reacted with PStBr in the presence of a nitroso group at reduced temperatures (30 oC) block copolymers were selectively formed with an alkoxyamine functionality in the center. This was done by first activating the PSt-Br to form a polymer radical that would react with the radical trap to form a persistent radical on the oxygen. The PMA-Br, once activated, reacted with the radical on the oxygen to form the block copolymer. To test the amount of functionality incorporated, a coupling reaction was performed with no nitroso present, and found that no reaction occurred. This showed that the radical trap is essential for the coupling to occur, and cleavage of the diblock indicated that the alkoxyamine functionality was indeed incorporated into the diblock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undergraduate research in chemistry provides not only a meaningful experience for the students, but is essential in getting research done. This talk will focus on an ongoing project in my lab: designing large molecules of specific shapes by studying the fundamental reactions. While results will be discussed, the talk will be tailored towards a general audience. I will attempt to highlight the outstanding contributions made by Bucknell students that have worked in my lab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of cyclic polystyrene (Pst) with an alkoxyamine functionality has been accomplished by intramolecular radical coupling in the presence of a nitroso radical trap Linear alpha,omega-dibrominated polystyrene, produced by the atom transfer radical polymerization (ATRP) of styrene using a dibrominated initiator, was subjected to chain-end activation via the atom transfer radical coupling (ATRC) process under pseudodilute conditions in the presence of 2-methyl-2-nitrosopropane (MNP). This radical trap-assisted, intramolecular ATRC (RTA-ATRC) produced cyclic polymers in greater than 90% yields possessing < G > values in the 0.8-0.9 range as determined by gel permeation chromatography (GPC). Thermal-induced opening of the cycles, made possible by the incorporated alkoxyamine, resulted in a return to the original apparent molecular weight, further supporting the formation of cyclic polymers in the RTA-ATRC reaction. Liquid chromatography-mass spectrometry (LC-MS) provided direct confirmation of the cyclic architecture and the incorporation of the nitroso group into the macrocycle RTA-ATRC cyclizations carried out with faster rates of polymer addition into the redox active solution and/or in the presence of a much larger excess of MNP (up to a 250:1 ratio of MNP:C-Br chain end) still yielded cyclic polymers that contained alkoxyamine functionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract- In this correspondence, a simple one-dimensional (1-D) differencing operation is applied to bilevel images prior to block coding to produce a sparse binary image that can be encoded efficiently using any of a number of well-known techniques. The difference image can be encoded more efficiently than the original bilevel image whenever the average run length of black pixels in the original image is greater than two. Compression is achieved because the correlation between adjacent pixels is reduced compared with the original image. The encoding/decoding operations are described and compression performance is presented for a set of standard bilevel images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a valuable tool for characterization of biomaterials due to its ability to measure local properties in heterogeneous, small or irregularly shaped samples. However, applying nanoindentation to compliant, hydrated biomaterials leads to many challenges including adhesion between the nanoindenter tip and the sample. Although adhesion leads to overestimation of the modulus of compliant samples when analyzing nanoindentation data using traditional analysis techniques, most studies of biomaterials have ignored its effects. This paper demonstrates two methods for managing adhesion in nanoindentation analysis, the nano-JKR force curve method and the surfactant method, through application to two biomedically-relevant compliant materials, poly(dimethyl siloxane) (PDMS) elastomers and poly(ethylene glycol) (PEG) hydrogels. The nano-JKR force curve method accounts for adhesion during data analysis using equations based on the Johnson-Kendall-Roberts (JKR) adhesion model, while the surfactant method eliminates adhesion during data collection, allowing data analysis using traditional techniques. In this study, indents performed in air or water resulted in adhesion between the tip and the sample, while testing the same materials submerged in Optifree Express() contact lens solution eliminated tip-sample adhesion in most samples. Modulus values from the two methods were within 7% of each other, despite different hydration conditions and evidence of adhesion. Using surfactant also did not significantly alter the properties of the tested material, allowed accurate modulus measurements using commercial software, and facilitated nanoindentation testing in fluids. This technique shows promise for more accurate and faster determination of modulus values from nanoindentation of compliant, hydrated biological samples. Copyright 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blending of common polymers allows for the rapid and facile synthesis of new materials with highly tunable properties at a fraction of the costs of new monomer development and synthesis. Most blends of polymers, however, are completely immiscible and separate into distinct phases with minimal phase interaction, severelydegrading the performance of the material. Cross-phase interactions and property enhancement can be achieved with these blends through reactive processing or compatibilizer addition. A new class of blend compatibilization relies on the mechanochemical reactions between polymer chains via solid-state, high energy processing. Two contrasting mechanochemical processing techniques are explored in this thesis: cryogenic milling and solid-state shear pulverization (SSSP). Cryogenic milling is a batch process where a milling rod rapidly impacts the blend sample while submerged within a bath of liquid nitrogen. In contrast, SSSP is a continuous process where blend components are subjected to high shear and compressive forces while progressing down a chilled twin-screw barrel. In the cryogenic milling study, through the application of a synthesized labeledpolymer, in situ formation of copolymers was observed for the first time. The microstructures of polystyrene/high-density polyethylene (PS/HDPE) blends fabricated via cryomilling followed by intimate melt-state mixing and static annealing were found to be morphologically stable over time. PS/HDPE blends fabricated via SSSP also showed compatibilization by way of ideal blend morphology through growth mechanisms with slightly different behavior compared to the cryomilled blends. The new Bucknell University SSSP instrument was carefully analyzed and optimized to produce compatibilized polymer blends through a full-factorial experiment. Finally, blends of varying levels of compatibilization were subjected to common material tests to determine alternative means of measuring and quantifying compatibilization,