2 resultados para Biology, Neuroscience|Psychology, Experimental|Psychology, Physiological

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The examination of telomere dynamics is a recent technique in ecology for assessing physiological state and age-related traits from individuals of unknown age. Telomeres shorten with age in most species and are expected to reflect physiological state, reproductive investment, and chronological age. Loss of telomere length is used as an indicator of biological aging, as this detrimental deterioration is associated with lowered survival. Lifespan dimorphism and more rapid senescence in the larger, shorter-lived sex are predicted in species with sexual size dimorphism, however, little is known about the effects of behavioral dimorphism on senescence and life history traits in species with sexual monomorphism. Here we compare telomere dynamics of thick-billed murres (Uria lomvia), a species with male-biased parental care, in two ways: 1) cross-sectionally in birds of known-age (0-28 years) from one colony and 2) longitudinally in birds from four colonies. Telomere dynamics are compared using three measures: the telomere restriction fragment (TRF), a lower window of TRF (TOE), and qPCR. All showed age-related shortening of telomeres, but the TRF measure also indicated that adult female murres have shorter telomere length than adult males, consistent with sex-specific patterns of ageing. Adult males had longer telomeres than adult females on all colonies examined, but chick telomere length did not differ by sex. Additionally, inter-annual telomere changes may be related to environmental conditions; birds from a potentially low quality colony lost telomeres, while those at more hospitable colonies maintained telomere length. We conclude that sex-specific patterns of telomere loss exist in the sexually monomorphic thick-billed murre but are likely to occur between fledging and recruitment. Longer telomeres in males may be related to their homogamous sex chromosomes (ZZ) or to selection for longer life in the care-giving sex. Environmental conditions appeared to be the primary drivers of annual changes in adult birds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (− sessions). Each session included an “Early” flavor for 8 min followed by a “Late” flavor for 8 min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(−), Late(+) vs. Late(−), Early(+) vs. Late(+), and Early(−) vs. Late(−). Rats only preferred Late(+), not Early(+), relative to their respective (−) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.