9 resultados para Biological Psychology
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Capuchin monkeys are notable among New World monkeys for their widespread use of tools. They use both hammer tools and insertion tools in the wild to acquire food that would be unobtainable otherwise. Evidence indicates that capuchins transport stones to anvil sites and use the most functionally efficient stones to crack nuts. We investigated capuchins’ assessment of functionality by testing their ability to select a tool that was appropriate for two different tool-use tasks: A stone for a hammer task and a stick for an insertion task. To select the appropriate tools, the monkeys investigated a baited tool-use apparatus (insertion or hammer), traveled to a location in their enclosure where they could no longer see the apparatus, made a selection between two tools (stick or stone), and then could transport the tool back to the apparatus to obtain a walnut. Four capuchins were first trained to select and use the appropriate tool for each apparatus. After training, they were then tested by allowing them to view a baited apparatus and then travel to a location 8 m distant where they could select a tool while out of view of the apparatus. All four monkeys chose the correct tool significantly more than expected and transported the tools back to the apparatus. Results confirm capuchins’ propensity for transporting tools, demonstrate their capacity to select the functionally appropriate tool for two different tool-use tasks, and indicate that they can retain the memory of the correct choice during a travel time of several seconds.
Resumo:
Pictorial representations of three-dimensional objects are often used to investigate animal cognitive abilities; however, investigators rarely evaluate whether the animals conceptualize the two-dimensional image as the object it is intended to represent. We tested for picture recognition in lion-tailed macaques by presenting five monkeys with digitized images of familiar foods on a touch screen. Monkeys viewed images of two different foods and learned that they would receive a piece of the one they touched first. After demonstrating that they would reliably select images of their preferred foods on one set of foods, animals were transferred to images of a second set of familiar foods. We assumed that if the monkeys recognized the images, they would spontaneously select images of their preferred foods on the second set of foods. Three monkeys selected images of their preferred foods significantly more often than chance on their first transfer session. In an additional test of the monkeys' picture recognition abilities, animals were presented with pairs of food images containing a medium-preference food paired with either a high-preference food or a low-preference food. The same three monkeys selected the medium-preference foods significantly more often when they were paired with low-preference foods and significantly less often when those same foods were paired with high-preference foods. Our novel design provided convincing evidence that macaques recognized the content of two-dimensional images on a touch screen. Results also suggested that the animals understood the connection between the two-dimensional images and the three-dimensional objects they represented.
Resumo:
Angiotensin II (AngII) plays a key role in maintaining body fluid homeostasis. The physiological and behavioral effects of central AngII include increased blood pressure and fluid intake. In vitro experiments demonstrate that repeated exposure to AngII reduces the efficacy of subsequent AngII, and behavioral studies indicate that prior icv AngII administration reduces the dipsogenic response to AngII administered later. Specifically, rats given a treatment regimen of three icv injections of a large dose of AngII, each separated by 20 min, drink less water in response to a test injection of AngII than do vehicle-treated controls given the same test injection. The present studies were designed to test three potential explanations for the reduced dipsogenic potency of AngII after repeated administration. To this end, we tested for motor impairment caused by repeated injections of AngII, for a possible role of visceral distress or illness, and for differences in the pressor response to the final test injection of AngII.We found that repeated injections of AngII neither affected drinking stimulated by carbachol nor did they produce a conditioned flavor avoidance. Furthermore, we found no evidence that differences in the pressor response to the final test injection of AngII accounted for the difference in intake. In light of these findings, we are able to reject these three explanations for the observed behavioral desensitization, and, we suggest instead that the mechanism for this phenomenon may be at the level of the receptor.
Resumo:
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (− sessions). Each session included an “Early” flavor for 8 min followed by a “Late” flavor for 8 min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(−), Late(+) vs. Late(−), Early(+) vs. Late(+), and Early(−) vs. Late(−). Rats only preferred Late(+), not Early(+), relative to their respective (−) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.
Resumo:
Recent research with several species of nonhuman primates suggests sophisticated motor-planning abilities observed in human adults may be ubiquitous among primates. However, there is considerable variability in the extent to which these abilities are expressed across primate species. In the present experiment, we explore whether the variability in the expression of anticipatory motor-planning abilities may be attributed to cognitive differences (such as tool use abilities) or whether they may be due to the consequences of morphological differences (such as being able to deploy a precision grasp). We compared two species of New World monkeys that differ in their tool use abilities and manual dexterity: squirrel monkeys, Saimiri sciureus (less dexterous with little evidence for tool use) and tufted capuchins, Sapajus apella (more dexterous and known tool users). The monkeys were presented with baited cups in an untrained food extraction task. Consistent with the morphological constraint hypothesis, squirrel monkeys frequently showed second-order motor planning by inverting their grasp when picking up an inverted cup, while capuchins frequently deployed canonical upright grasping postures. Findings suggest that the lack of ability for precision grasping may elicit more consistent second-order motor planning, as the squirrel monkeys (and other species that have shown a high rate of second-order planning) have fewer means of compensating for inefficient initial postures. Thus, the interface between morphology and motor planning likely represents an important factor for understanding both the ontogenetic and phylogenetic origins of sophisticated motor-planning abilities.
Resumo:
Reconciliation is the occurrence of friendly behaviour between opponents shortly after an aggressive conflict. In primate groups, reconciliation reduces aggression and post-conflict arousal. Aggression within a group can also increase arousal of bystanders (e.g. increase bystanders’ rates of self-directed behaviour). Since reconciliation reduces aggression between opponents, we tested whether it also reduces self-directed behaviour in bystanders. Following aggression in a captive group of hamadryas baboons, one observer conducted a focal sample on one of the combatants to document reconciliation and a second observer simultaneously conducted a focal sample on a randomly selected bystander. Matched control observations were then collected on the same individuals in a nonaggressive context to obtain baseline levels of behaviour. The self-directed behaviour of bystanders was elevated after witnessing a fight compared to baseline levels. If combatants reconciled aggression, bystander rates of self-directed behaviour significantly decreased. If combatants did not reconcile aggression, bystander rates of self-directed behaviour remained at elevated levels, significantly higher than after reconciliation. If combatants affiliated with partners other than their original opponent, bystander rates of self-directed behaviour did not decrease. The rate of bystander self-directed behaviour after a combatant affiliated with its opponent was significantly lower than the rate after a combatant affiliated with other animals. Witnessing aggression increased arousal in bystanders, and reconciliation between the combatants was accompanied by reduced bystander arousal. The reduction was specific to contexts in which former opponents interacted. We suggest that bystanders recognized the functional significance of this conflict resolution mechanism when it occurred in their group.
Resumo:
Self-control is a prerequisite for complex cognitive processes such as cooperation and planning. As such, comparative studies of self-control may help elucidate the evolutionary origin of these capacities. A variety of methods have been developed to test for self-control in non-human primates that include some variation of foregoing an immediate reward in order to gain a more favorable reward. We used a token exchange paradigm to test for self-control in capuchin monkeys (Cebus apella). Animals were trained that particular tokens could be exchanged for food items worth different values. To test for self-control, a monkey was provided with a token that was associated with a lower-value food. When the monkey exchanged the token, the experimenter provided the monkey with a choice between the lower-value food item associated with the token or another token that was associated with a higher-value food. If the monkey chose the token, they could then exchange it for the higher-value food. Of seven monkeys trained to exchange tokens, five demonstrated that they attributed value to the tokens by differentially selecting tokens for higher-value foods over tokens for lower-value foods. When provided with a choice between a food item or a token for a higher-value food, two monkeys selected the token significantly more than expected by chance. The ability of capuchin monkeys to forego an immediate food reward and select a token that could then be traded for a more preferred food demonstrated some degree of self-control. Thus, results suggest a token exchange paradigm could be a successful technique for assessing self-control in this New World species.
Resumo:
It is generally thought that macronutrients stimulate intake when sensed in the mouth (e.g., sweet taste) but as food enters the GI tract its effects become inhibitory, triggering satiation processes leading to meal termination. Here we report experiments extending recent work (see [1]) showing that under some circumstances nutrients sensed in the gut produce a positive feedback effect, immediately promoting continued intake. In one experiment, rats with intragastric (IG) catheters were accustomed to consuming novel flavors in saccharin daily while receiving water infused IG (5 ml/15 min). The very first time glucose (16% w/w) was infused IG instead of water, intake accelerated within 6 mins of infusion onset and total intake increased 29% over baseline. Experiment 2 replicated this stimulatory effect with glucose infusion but not fructose nor maltodextrin. Experiment 3 showed the immediate intake stimulation is specific to the flavor accompanying the glucose infusion. Rats were accustomed to flavored saccharin being removed and replaced with the same or a different flavor. When glucose infusion accompanied the first bottle, intake from the second bottle was stimulated only when it contained the same flavor, not when the flavor switched. Thus we confirm not only that glucose sensed postingestively can have a rapid, positive feedback effect ('appetition' as opposed to 'satiation') but that it is sensory-specific, promoting continued intake of a recently encountered flavor. This sensory specific motivation may represent an additional psychobiological influence on meal size, and further, has implications for the mechanisms of learned flavor-nutrient associations.
Resumo:
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (- sessions). Each session included an "Early" flavor for 8min followed by a "Late" flavor for 8min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(-), Late(+) vs. Late(-), Early(+) vs. Late(+), and Early(-) vs. Late(-). Rats only preferred Late(+), not Early(+), relative to their respective (-) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.