5 resultados para Bio-inspired computation
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
A general approach is presented for implementing discrete transforms as a set of first-order or second-order recursive digital filters. Clenshaw's recurrence formulae are used to formulate the second-order filters. The resulting structure is suitable for efficient implementation of discrete transforms in VLSI or FPGA circuits. The general approach is applied to the discrete Legendre transform as an illustration.
Resumo:
The Rankin convolution type Dirichlet series D-F,D-G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series D-F,D-G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.
Resumo:
This letter presents a new recursive method for computing discrete polynomial transforms. The method is shown for forward and inverse transforms of the Hermite, binomial, and Laguerre transforms. The recursive flow diagrams require only 2 additions, 2( +1) memory units, and +1multipliers for the +1-point Hermite and binomial transforms. The recursive flow diagram for the +1-point Laguerre transform requires 2 additions, 2( +1) memory units, and 2( +1) multipliers. The transform computation time for all of these transforms is ( )
Resumo:
Clenshaw’s recurrenee formula is used to derive recursive algorithms for the discrete cosine transform @CT) and the inverse discrete cosine transform (IDCT). The recursive DCT algorithm presented here requires one fewer delay element per coefficient and one fewer multiply operation per coeflident compared with two recently proposed methods. Clenshaw’s recurrence formula provides a unified development for the recursive DCT and IDCT algorithms. The M v e al gorithms apply to arbitrary lengtb algorithms and are appropriate for VLSI implementation.
Resumo:
The means through which the nervous system perceives its environment is one of the most fascinating questions in contemporary science. Our endeavors to comprehend the principles of neural science provide an instance of how biological processes may inspire novel methods in mathematical modeling and engineering. The application ofmathematical models towards understanding neural signals and systems represents a vibrant field of research that has spanned over half a century. During this period, multiple approaches to neuronal modeling have been adopted, and each approach is adept at elucidating a specific aspect of nervous system function. Thus while bio-physical models have strived to comprehend the dynamics of actual physical processes occurring within a nerve cell, the phenomenological approach has conceived models that relate the ionic properties of nerve cells to transitions in neural activity. Further-more, the field of neural networks has endeavored to explore how distributed parallel processing systems may become capable of storing memory. Through this project, we strive to explore how some of the insights gained from biophysical neuronal modeling may be incorporated within the field of neural net-works. We specifically study the capabilities of a simple neural model, the Resonate-and-Fire (RAF) neuron, whose derivation is inspired by biophysical neural modeling. While reflecting further biological plausibility, the RAF neuron is also analytically tractable, and thus may be implemented within neural networks. In the following thesis, we provide a brief overview of the different approaches that have been adopted towards comprehending the properties of nerve cells, along with the framework under which our specific neuron model relates to the field of neuronal modeling. Subsequently, we explore some of the time-dependent neurocomputational capabilities of the RAF neuron, and we utilize the model to classify logic gates, and solve the classic XOR problem. Finally we explore how the resonate-and-fire neuron may be implemented within neural networks, and how such a network could be adapted through the temporal backpropagation algorithm.