3 resultados para Behavior patterns

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary transitions between aquatic and terrestrial environments are common in vertebrate evolution. These transitions require major changes in most physiological functions, including feeding. Emydid turtles are ancestrally aquatic, with most species naturally feeding only in water, but some terrestrial species can modulate their feeding behavior appropriately for both media. In addition, many aquatic species can be induced to feed terrestrially. A comparison of feeding in both aquatic and terrestrial environments presents an excellent opportunity to investigate the evolution of terrestrial feeding from aquatic feeding, as well as a system within which to develop methods for studying major evolutionary transitions between environments. Individuals from eight species of emydid turtles (six aquatic, two terrestrial) were filmed while feeding underwater and on land. Bite kinematics were analyzed to determine whether aquatic turtles modulated their feeding behavior in a consistent and appropriate manner between environments. Aquatic turtles showed consistent changes between environments, taking longer bites and using more extensive motions of the jaw and hyoid when feeding on land. However, these motions differ from those shown by species that naturally feed in both environments and mostly do not seem to be appropriate for terrestrial feeding. For example, more extensive motions of the hyoid are only effective during underwater suction feeding. Emydids evolving to feed on land probably would have needed to evolve or learn to overcome many, but not all, aspects of the intrinsic emydid response to terrestrial feeding. Studies that investigate major evolutionary transitions must determine what responses to the new environment are shown by naïve individuals in order to fully understand the evolutionary patterns and processes associated with these transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study seeks to answer whether the availability heuristic leads physicians to utilize more medical care than is economically efficient. Do rare, salient events alter physicians' perceptions about the probability of patient harm? Do these events lead physicians to overutilize certain medical procedures? This study uses Pennsylvania inpatient hospital admissions data from 2009 aggregated at the physician level to investigate these questions. The data come from the 2009 Pennsylvania Health Care Cost Containment Council (PHC4). The study is divided into two parts. In Part I, we examine whether bad outcomes during childbirth (defined as maternal mortality, an obstetric fistula or a uterine rupture) lead physicians to utilize more cesarean sections on future patients. In Part II, we examine whether bad outcomes associated with appendicitis (defined as patient death, a perforated or ruptured appendix or sepsis) lead physicians to perform more negative appendectomies (appendectomies performed when the patient did not have appendicitis) on future patients. Overall the study does not find evidence to support the claim that the availability heuristic leads physicians to overutilize medical care on future patients. However, the study does find evidence that variations in health care utilization are strongly correlated with individual physician practice patterns. The results of the study also imply that physicians' financial incentives may be a source of variation in health care utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WNS-affected bats did so over similar time frames as WNSunaffected bats. The behaviors of bats with WNS did not change as drastically as expected. Thereseems to be little to no effect on their ability to fly/forage until much later stages of the disease when they are likely near death. WNS-affected bats are grooming more which could be altering the way they use energy reserves during hibernation possibly leading tostarvation and eventually death. The decreased likelihood of arousals in response to external cues may be the result of spending more energy during previous and increasingly frequent arousals. While it is clear that WNS does result in changes in behavior whether these changes are directly in response to fungal skin infection or to some other component of the syndrome such as decreased energy availability or loss of homeostasis is unknown. bat behavior, white-nose syndrome, behavior, video surveillance, arousal patterns White-Nose Syndrome (WNS) is a disease of hibernating bats caused by the fungal pathogen Geomyces destructans. The fungus, which was first noted in 2006, invades bats wings and other exposed membranes, eventually resulting in death. Researchers have yet to understand many aspects of this disease, including basic etiology and epidemiology. There is also a lack of information on how fungal infection may change the behavior of healthy bats during hibernation or how changes in behavior may influence disease progression. Based upon the physiological changes that are known to occur in affected bats, and upon anecdotal observations of aberrant behavior in these bats, I hypothesized that WNS would significantly change the behavior of the little brown myotis (Myotis lucifugus). My research examined the behavior of hibernating bats during arousals from torpor. I compared WNS-affected and unaffected bats, in the field and incaptivity, using motion-sensitive infrared cameras. Flight maneuverability and echolocation were also tested between WNS-affected and unaffected bats during arousalsfrom hibernation to detect changes in the bats' ability to perform basic locomotion or potentially catch insect prey. Lastly, hibernating bats were artificially disturbed and theirarousal patterns were monitored to examine changes in the response to external stimuli between WNS-affected and unaffected bats.Bats with WNS groomed for longer periods of time after arousing from torpor, both in the field and in captivity. They also engaged in longer periods of any sort of activity during these arousals. There were no changes in acoustical signaling during flight tests and changes in flight maneuverability were only found in bats were seen staging" near the entrance of the mine which is itself a unique behavior exhibited by affected bats. At this point these bats were likely near death and could barely fly at all. In response toexternal stimuli bats with WNS were less likely to arouse than unaffected bats. However when they did arouse WNS-affected bats did so over similar time frames as WNSunaffected bats. The behaviors of bats with WNS did not change as drastically as expected. Thereseems to be little to no effect on their ability to fly/forage until much later stages of the disease when they are likely near death. WNS-affected bats are grooming more which could be altering the way they use energy reserves during hibernation possibly leading tostarvation and eventually death. The decreased likelihood of arousals in response to external cues may be the result of spending more energy during previous and increasingly frequent arousals. While it is clear that WNS does result in changes in behavior whetherthese changes are directly in response to fungal skin infection or to some other component of the syndrome such as decreased energy availability or loss of homeostasis is unknown."