5 resultados para BOND ANALOG
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Calculations were run on the methylated DNA base pairs adenine:thymine and adenine:difluorotoluene to further investigate the hydrogen-bonding properties of difluorotoluene (F). Geometries were optimized using hybrid density functional theory. Single-point calculations at the MP2(full) level were performed to obtain more rigorous energies. The functional counterpoise method was used to correct for the basis set superposition error (BSSE), and the interaction energies were also corrected for fragment relaxation. These corrections brought the B3LYP and MP2 interaction energies into excellent agreement. In the gas phase, the Gibbs free energies calculated at the B3LYP and MP2 levels of theory predict that A and T will spontaneously form an A:T pair while A:F spontaneously dissociates into A and F. Solvation effects on the pairing of the bases were explored using implicit solvent models for water and chloroform. In aqueous solution, both A:T and A:F are predicted to dissociate into their component monomers. Semiempirical calculations were performed on small sections of B-form DNA containing the two pairs, and the results provide support for the concept that base stacking is more important than hydrogen bonding for the stability of the A:F pair within a DNA helix.
Resumo:
Semiempirical molecular orbital calculations have been performed for the first step in the alkaline hydrolysis of the neutral benzoylester of cocaine. Successes, failures, and limitations of these calculations are reviewed. A PM3 calculated transition state structure is compared with the PM3 calculated structure for the hapten used to induce catalytic antibodies for the hydrolysis of cocaine. Implications of these calculations for the computer–aided design of transition state analogs for the induction of catalytic antibodies are discussed.
Resumo:
We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, ∼4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody-based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl-ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.
Resumo:
We have discovered using Pan-STARRS1 an extremely red late-L dwarf, which has (J - K)(MKO) = 2.78 and (J - K) (2MASS) = 2.84, making it the reddest known field dwarf and second only to 2MASS J1207-39b among substellar companions. Near-IR spectroscopy shows a spectral type of L7 +/- 1 and reveals a triangular H-band continuum and weak alkali (K I and Na I) lines, hallmarks of low surface gravity. Near-IR astrometry from the Hawaii Infrared Parallax Program gives a distance of 24.6 +/- 1.4 pc and indicates a much fainter J-band absolute magnitude than field L dwarfs. The position and kinematics of PSO J318.5-22 point to membership in the beta Pic moving group. Evolutionary models give a temperature of 1160(-40)(+30) K and a mass of 6.5(-1.0)(+1.3) M-Jup, making PSO J318.5-22 one of the lowest mass free-floating objects in the solar neighborhood. This object adds to the growing list of low-gravity field L dwarfs and is the first to be strongly deficient in methane relative to its estimated temperature. Comparing their spectra suggests that young L dwarfs with similar ages and temperatures can have different spectral signatures of youth. For the two objects with well constrained ages (PSO J318.5-22 and 2MASS J0355+11), we find their temperatures are approximate to 400 K cooler than field objects of similar spectral type but their luminosities are similar, i.e., these young L dwarfs are very red and unusually cool but not "underluminous." Altogether, PSO J318.5-22 is the first free-floating object with the colors, magnitudes, spectrum, luminosity, and mass that overlap the young dusty planets around HR 8799 and 2MASS J1207-39
Resumo:
ABSTRACT FOR PART I: PHOSPHA-MICHAEL ADDITIONS TO ACTIVATED INTERNAL ALKENES: STERIC AND ELECTRONIC EFFECTS A method for the phospha-Michael addition of bis(4-methyl)phenyl phosphine oxide to activated internal alkenes has been developed. Michael acceptors including cinnamates, crotonates, chalcones, and internal alkenes containing multiple activating groups were all successfully utilized in this reaction. The reaction was fairly tolerant of electron-donating and electron-withdrawing substituents on the Michael acceptor, and moderate to excellent yields (49-96%) of the adducts were isolated. When steric bulk was increased by a second substituent on the -position of the Michael-acceptor the reaction was suppressed. This was usually overcome by adding a second activating substituent to the -position. ABSTRACT FOR PART II: MICROWAVE-ASSISTED ARYLGOLD BOND FORMATION A microwave-assisted method was developed for the formation of arylgold complexes containing (2-Biphenyl)di-tert-butylphosphine (JohnPhos) as the supporting phosphine ligand. Arylboronic acids with increasingly bulky aromatic groups were screened to determine the steric limitations of the reaction. Arylgold complexes (JohnPhos)Au(p-methoxyphenyl), (JohnPhos)Au(2,4,6-trimethylphenyl), and (JohnPhos)Au(4-bromo-10-anthracene) were all synthesized by microwave irradiation at 70ºC in the presence of Cs2CO3 in either THF or iPrOH. Reactions performed with arylboronic acids containing unhindered ortho positions were carried out in THF. Arylboronic acids with substituents on the ortho position required iPrOH as the reaction solvent. Arylboronic acids with extreme steric hindrance on the ortho position of the aryl substituent, 2,4,6-triisopropylpphenylboronic acid, were unreactive. It was determined that increasing the irradiation temperature increased the formation of side products, therefore to promote conversion to the arylgold complex the duration of the reaction time was increased while maintaining a temperature of 70ºC. Arylgold complexes (JohnPhos)Au(p-methoxyphenyl), (JohnPhos)Au(2,4,6-trimethylphenyl), and (JohnPhos)Au(4-bromo-10-anthracene) were synthesized with moderate yields (40-69%).