5 resultados para Applied Mechanics

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occupant impact velocity (OIV) and acceleration severity index (ASI) are competing measures of crash severity used to assess occupant injury risk in full-scale crash tests involving roadside safety hardware, e.g. guardrail. Delta-V, or the maximum change in vehicle velocity, is the traditional metric of crash severity for real world crashes. This study compares the ability of the OIV, ASI, and delta-V to discriminate between serious and non-serious occupant injury in real world frontal collisions. Vehicle kinematics data from event data recorders (EDRs) were matched with detailed occupant injury information for 180 real world crashes. Cumulative probability of injury risk curves were generated using binary logistic regression for belted and unbelted data subsets. By comparing the available fit statistics and performing a separate ROC curve analysis, the more computationally intensive OIV and ASI were found to offer no significant predictive advantage over the simpler delta-V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the variation of flow stress with strain rate and grain size in a magnesium alloy deformed at a constant strain rate and 450 °C can be predicted by a crystal plasticity model that includes grain boundary sliding and diffusion. The model predicts the grain size dependence of the critical strain rate that will cause a transition in deformation mechanism from dislocation creep to grain boundary sliding, and yields estimates for grain boundary fluidity and diffusivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, layered manufacturing (LM) processes have begun to progress from rapid prototyping techniques towards rapid manufacturing methods, where the objective is now to produce finished components for potential end use in a product (Caulfield et al., 2007). LM is especially promising for the fabrication of specific need, low volume products such as replacement parts for larger systems. This trend accentuates the need for a thorough understanding of the associated mechanical properties and the resulting behavior of parts produced by layered methods. Not only must the base material be durable, but the mechanical properties of the layered components must be sufficient to meet in-service loading and operational requirements, and be reasonably comparable to parts produced by more traditional manufacturing techniques. This chapter presents the details of a study completed to quantitatively analyze the potential of fused deposition modelling to fully evolve into a rapid manufacturing tool. The project objective is to develop an understanding of the dependence of the mechanical properties of FDM parts on raster orientation and to assess whether these parts are capable of maintaining their integrity while under service loading. The study examines the effect of fiber orientation, i.e. the direction of the polymer beads relative to the loading direction of the part, on a variety of important mechanical properties of ABS components fabricated by fused deposition modeling. Tensile, compressive, flexural, impact, and fatigue strength properties of FDM specimens are examined, evaluated, and placed in context in comparison with the properties of injection molded ABS parts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50–82% higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4%; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental measurements are used to characterize the anisotropy of flow stress in extruded magnesium alloy AZ31 sheet during uniaxial tension tests at temperatures between 350°C and 450°C, and strain rates ranging from 10-5 to 10-2 s-1. The sheet exhibits lower flow stress and higher tensile ductility when loaded with the tensile axis perpendicular to the extrusion direction compared to when it is loaded parallel to the extrusion direction. This anisotropy is found to be grain size, strain rate, and temperature dependent, but is only weakly dependent on texture. A microstructure based model (D. E. Cipoletti, A. F. Bower, P. E. Krajewski, Scr. Mater., 64 (2011) 931–934) is used to explain the origin of the anisotropic behavior. In contrast to room temperature behavior, where anisotropy is principally a consequence of the low resistance to slip on the basal slip system, elevated temperature anisotropy is found to be caused by the grain structure of extruded sheet. The grains are elongated parallel to the extrusion direction, leading to a lower effective grain size perpendicular to the extrusion direction. As a result, grain boundary sliding occurs more readily if the material is loaded perpendicular to the extrusion direction.