2 resultados para Amyraut, Moïse, 1596-1664.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Reform is a word that, one might easily say, characterizes more than any other the history and development of Buddhism. Yet, it must also be said that reform movements in East Asian Buddhism have often taken on another goal—harmony or unification; that is, a desire not only to reconstruct a more worthy form of Buddhism, but to simultaneously bring together all existing forms under a single banner, in theory if not in practice. This paper explores some of the tensions between the desire for reform and the quest for harmony in modern Japanese Buddhism thought, by comparing two developments: the late 19th century movement towards ‘New Buddhism’ (shin Bukkyō) as exemplified by Murakami Senshō 村上専精 (1851–1929), and the late 20th century movement known as ‘Critical Buddhism’ (hihan Bukkyō), as found in the works of Matsumoto Shirō 松本史朗 and Hakamaya Noriaki 袴谷憲昭. In all that has been written about Critical Buddhism, in both Japanese and English, very little attention has been paid to the place of the movement within the larger traditions of Japanese Buddhist reform. Here I reconsider Critical Buddhism in relation to the concerns of the previous, much larger trends towards Buddhist reform that emerged almost exactly 100 years previous—the so-called shin Bukkyō or New Buddhism of the late-Meiji era. Shin Bukkyō is a catch-all term that includes the various writings and activities of Inoue Enryō, Shaku Sōen, and Kiyozawa Manshi, as well as the so-called Daijō-hibussetsuron, a broad term used (often critically) to describe Buddhist writers who suggested that Mahāyāna Buddhism is not, in fact, the Buddhism taught by the ‘historical’ Buddha Śākyamuni. Of these, I will make a few general remarks about Daijō-hibusseturon, before turning attention more specifically to the work of Murakami Senshō, in order to flesh out some of the similarities and differences between his attempt to construct a ‘unified Buddhism’ and the work of his late-20th century avatars, the Critical Buddhists. Though a number of their aims and ideas overlap, I argue that there remain fundamental differences with respect to the ultimate purposes of Buddhist reform. This issue hinges on the implications of key terms such as ‘unity’ and ‘harmony’ as well as the way doctrinal history is categorized and understood, but it also relates to issues of ideology and the use and abuse of Buddhist doctrines in 20th-century politics.
Resumo:
There is a need for biomethane capture and carbon dioxide sequestration to mitigate evident global climate change. This research work investigated the potential for microalgae to remove CO2 from biogas as a biotechnical method for upgrading the thermal value for subsequent compression, liquification, or introduction to natural gas pipelines. Because biogas is largely methane, the effect of high methane environments on mixed microalgae was explored and found that specific carbon utilization rates were not statistically different when microalgae were exposed to biogas environments (70% v/v CH4) , relative to high CO2 environment. The uses of conventional bubbled column photobioreactors (PBR) were assessed for CO2 removal and subsequent CH4 enrichment. A continuously-bubbled biogas PBR (cB-PBR5) and intermittently-bubbled biogas PBR (iB-PBR) experienced CO2 loading rates of about 1664 and 832 mg C/L*day and showed 30.0 and 60.1 % carbon removal, respectively. However, a lack of biogas enrichment and issues associated growth inhibition due to high CO2 environments as well as stripping the dissolved gases, namely oxygen and nitrogen, from the bulk liquid and introduction to the outlet gas prompted the consideration for gas/liquid separation using nonporous hollow-fiber (HF) membranes for CO2 transfer. The potential for two non-porous HF membrane materials [polydimethylsiloxane (PDMS) and composite polyurethane (PU)] were modeled along fiber length using a mechanistic model based on polymeric material transport properties (Gilmore et al., 2009). Based on a high CO2:CH4 permeability selectivity for PU of 76.2 the model predicted gas enrichment along an 8.5 cm fiber length. Because PDMS permeability selectivity is low (3.5), evident gas transfer was not predicated along a 34.3 cm length. Both of these HF materials were implemented in hollow-fiber membrane-carbonated biofilm (HFMcB) PBRs for microalgal-mediated biogas enrichment. Phototrophic biofilm colonization occurred on the membrane, where CO2 concentration was greatest. The presence of a biofilm demonstrated greater resiliency to high CO2 environments, compared to the conventional PBRs. However, as the PDMS model predicted, the PDMS HFMcBs did not demonstrate gas enrichment. These reactors received CO2 loading rates of 200 mg C/L*day based on PDMS permeability flux and showed approximately 65% removal of the total C transferred across the membrane. Thus, the HFMcBs demonstrated controlled carbonation of the bulk liquid via a nonporous HF membrane. Likewise, the experimental PU HFMcB did not show gas enrichment yet this result should be further explored due to the high permeability selectivity of the polymeric material. Chemical stratifications, namely pH and dissolved O2, present in a PDMS membrane-carbonated biofilm were analyzed using electrochemical microsensors. Results indicated that high DO (20 mg L-1) exists at surface of the biofilm where light availability is greatest and low pH microenvironments (pH=5.40) exist deep in the biofilm where the diffusive flux of CO2 drives transfer through the biofilm. The presence of a 400-600 ¿m liquid phase boundary layer was evident from microsensor profiles. Cryosectioning of the biofilm samples showed the biofilm to be approximately 1.17 ± 0.07 mm thick, suggesting that the high localized concentration of biomass associated with the phototrophic biofilm aided in overcoming inhibition in a microenvironment dominated by CO2(aq). Challenges of biofilm detachment and PBR fouling as well as microalgal growth inhibition in the presence of high CO2 content remain for applications of microalgae for biogas enrichment.