9 resultados para Algebraic and analytic reversibility
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
In an accelerated exclusion process (AEP), each particle can "hop" to its adjacent site if empty as well as "kick" the frontmost particle when joining a cluster of size ℓ⩽ℓ_{max}. With various choices of the interaction range, ℓ_{max}, we find that the steady state of AEP can be found in a homogeneous phase with augmented currents (AC) or a segregated phase with holes moving at unit velocity (UV). Here we present a detailed study on the emergence of the novel phases, from two perspectives: the AEP and a mass transport process (MTP). In the latter picture, the system in the UV phase is composed of a condensate in coexistence with a fluid, while the transition from AC to UV can be regarded as condensation. Using Monte Carlo simulations, exact results for special cases, and analytic methods in a mean field approach (within the MTP), we focus on steady state currents and cluster sizes. Excellent agreement between data and theory is found, providing an insightful picture for understanding this model system.
Resumo:
The Rankin convolution type Dirichlet series D-F,D-G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series D-F,D-G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.
Resumo:
Each of four principal components analyses (n = 3,944) incorporated student self-ratings (Most accurate to Least accurate) on one of the four Clark-Trow educational philosophies: Vocational, Academic, Collegiate, Nonconformist. The analyses of these 25-variable correlation matrices yielded 2 factors differentially associated with educational philosophy: Sociability versus Independence (replacing Clark-Trow's "Identification with the College") and Liberalism versus Conservatism (replacing Clark-Trow's "Involvement with Ideas"). The Vocational philosophy was associated primarily with Conservatism, the Collegiate with Sociability, and the Nonconformist with Liberalism; the Academic was moderately associated with both Independence and Liberalism.
Resumo:
We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u (*)/u (*R) , where u (*) is the friction velocity and u (*R) is the friction velocity from the uniform building height case, is expressed well as an algebraic function of lambda and sigma (h) /h (m) , where lambda is the frontal area index, sigma (h) is the standard deviation of the building height, and h (m) is the mean building height. The simulations also resulted in a simple algebraic relation for z (0)/z (0R) as a function of lambda and sigma (h) /h (m) , where z (0) is the aerodynamic roughness length and z (0R) is z (0) found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.
Resumo:
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra generated by the algebra of bounded analytic functions and the conjugates of Blaschke products with angular derivative finite everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.
Resumo:
This article retraces the “genealogy” of the fideist perspective in philosophy as well as literature, especially within the writings of Søren Kierkegaard and the novel Don Quixote. It contends that a demythologized perspective of the fideist-humanist sort, based upon Erasmian tolerance and intellectual creativity and updated with the insights of post-analytic theory (e.g., the work of Alasdair MacIntyre, Richard Rorty, and Jeffrey Stout), without revoking the vocabulary of transcendence, can reinforce the weathered but still valuable post-Enlightenment moral vocabulary, and can reiterate the humaneness of liberal hope without undue encumbrance from the dogmatic baggage of traditional theological jargon and metaphysics.
Resumo:
Pesiqta Rabbati is a unique homiletic midrash that follows the liturgical calendar in its presentation of homilies for festivals and special Sabbaths. This article attempts to utilize Pesiqta Rabbati in order to present a global theory of the literary production of rabbinic/homiletic literature. In respect to Pesiqta Rabbati it explores such areas as dating, textual witnesses, integrative apocalyptic meta-narrative, describing and mapping the structure of the text, internal and external constraints that impacted upon the text, text linguistic analysis, form-analysis: problems in the texts and linguistic gap-filling, transmission of text, strict formalization of a homiletic unit, deconstructing and reconstructing homiletic midrashim based upon form-analytic units of the homily, Neusner’s documentary hypothesis, surface structures of the homiletic unit, and textual variants. The suggested methodology may assist scholars in their production of editions of midrashic works by eliminating superfluous material and in their decoding and defining of ancient texts.
Resumo:
The goal of this paper is to contribute to the understanding of complex polynomials and Blaschke products, two very important function classes in mathematics. For a polynomial, $f,$ of degree $n,$ we study when it is possible to write $f$ as a composition $f=g\circ h$, where $g$ and $h$ are polynomials, each of degree less than $n.$ A polynomial is defined to be \emph{decomposable }if such an $h$ and $g$ exist, and a polynomial is said to be \emph{indecomposable} if no such $h$ and $g$ exist. We apply the results of Rickards in \cite{key-2}. We show that $$C_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,(z-z_{1})(z-z_{2})...(z-z_{n})\,\mbox{is decomposable}\},$$ has measure $0$ when considered a subset of $\mathbb{R}^{2n}.$ Using this we prove the stronger result that $$D_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,\mbox{There exists\,}a\in\mathbb{C}\,\,\mbox{with}\,\,(z-z_{1})(z-z_{2})...(z-z_{n})(z-a)\,\mbox{decomposable}\},$$ also has measure zero when considered a subset of $\mathbb{R}^{2n}.$ We show that for any polynomial $p$, there exists an $a\in\mathbb{C}$ such that $p(z)(z-a)$ is indecomposable, and we also examine the case of $D_{5}$ in detail. The main work of this paper studies finite Blaschke products, analytic functions on $\overline{\mathbb{D}}$ that map $\partial\mathbb{D}$ to $\partial\mathbb{D}.$ In analogy with polynomials, we discuss when a degree $n$ Blaschke product, $B,$ can be written as a composition $C\circ D$, where $C$ and $D$ are finite Blaschke products, each of degree less than $n.$ Decomposable and indecomposable are defined analogously. Our main results are divided into two sections. First, we equate a condition on the zeros of the Blaschke product with the existence of a decomposition where the right-hand factor, $D,$ has degree $2.$ We also equate decomposability of a Blaschke product, $B,$ with the existence of a Poncelet curve, whose foci are a subset of the zeros of $B,$ such that the Poncelet curve satisfies certain tangency conditions. This result is hard to apply in general, but has a very nice geometric interpretation when we desire a composition where the right-hand factor is degree 2 or 3. Our second section of finite Blaschke product results builds off of the work of Cowen in \cite{key-3}. For a finite Blaschke product $B,$ Cowen defines the so-called monodromy group, $G_{B},$ of the finite Blaschke product. He then equates the decomposability of a finite Blaschke product, $B,$ with the existence of a nontrivial partition, $\mathcal{P},$ of the branches of $B^{-1}(z),$ such that $G_{B}$ respects $\mathcal{P}$. We present an in-depth analysis of how to calculate $G_{B}$, extending Cowen's description. These methods allow us to equate the existence of a decomposition where the left-hand factor has degree 2, with a simple condition on the critical points of the Blaschke product. In addition we are able to put a condition of the structure of $G_{B}$ for any decomposable Blaschke product satisfying certain normalization conditions. The final section of this paper discusses how one can put the results of the paper into practice to determine, if a particular Blaschke product is decomposable. We compare three major algorithms. The first is a brute force technique where one searches through the zero set of $B$ for subsets which could be the zero set of $D$, exhaustively searching for a successful decomposition $B(z)=C(D(z)).$ The second algorithm involves simply examining the cardinality of the image, under $B,$ of the set of critical points of $B.$ For a degree $n$ Blaschke product, $B,$ if this cardinality is greater than $\frac{n}{2}$, the Blaschke product is indecomposable. The final algorithm attempts to apply the geometric interpretation of decomposability given by our theorem concerning the existence of a particular Poncelet curve. The final two algorithms can be implemented easily with the use of an HTML
Resumo:
We consider analytic reproducing kernel Hilbert spaces H with orthonormal bases of the form {(a(n) + b(n)z)z(n) : n >= 0}. If b(n) = 0 for all n, then H is a diagonal space and multiplication by z, M-z, is a weighted shift. Our focus is on providing extensive classes of examples for which M-z is a bounded subnormal operator on a tridiagonal space H where b(n) not equal 0. The Aronszajn sum of H and (1 - z)H where H is either the Hardy space or the Bergman space on the disk are two such examples.