5 resultados para Active appearance model

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women. Tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment, yet many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Therefore, scientists are searching for breast cancer drugs that have different molecular targets. Previous work revealed that 8-mer and cyclic 9-mer peptides inhibit breast cancer in mouse and rat model systems, interacting with an unknown receptor, while peptides smaller than eight amino acids did not inhibit breast cancer. We have shown that the use of replica exchange molecular dynamics predicts structure and dynamics of active peptides, leading to the discovery of smaller peptides with full biological activity. These simulations identified smaller peptide analogs with a conserved turn, a β-turn formed in the larger peptides. These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition. We outline the computational methods that were tried and used with the experimental information that led to the successful completion of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few decades the impacts of climate warming have been significant in alpine glaciated regions. Many valley glaciers formerly linked as distributary glaciers to high-level icecaps have decoupled at their icefalls, exposing major escarpments and generating a suite of dynamic landforrns dominated by mass wasting. Ice-dominated landforms, here termed icy debris fans, develop rapidly by ice avalanching, rockfall, and icy debris flow. Field-based reconnaissance studies at two alpine settings, the Wrangell Mountains of Alaska and the Southern Alps of New Zealand, provide a preliminary morphogenetic model of spatial and temporal evolution of icy debris fans in a range of alpine settings. The influence of these processes on landform evolution is largely unrecognized in the literature dealing with post-glacial landform adjustment known as the paraglacial. A better understanding of these dynamic processes will be increasingly important because of the extreme geohazards characterizing these areas. Our field studies show that after glacier decoupling, icy debris fans begin to form along the base of bedrock escarpments at the mouths of catchments and prograde over valley glaciers. The presence of a distinct catchment, apex, and fan morphology distinguishes these landforms from other landforms common in periglacial hillslope settings receiving abundant clastic debris and ice. Ice avalanching is the most abundant process involved in icy debris fan formation. Fans developed below weakly incised catchments are dominated by ice avalanching and are composed primarily of ice with minor lithic detritus. Typically, avalanches fall into the fan catchments where sediments transform into grainflows that flow onto the fans. Once on the fans, avalanche deposits ablate rapidly, flattening and concentrating lithic fragments at the surface. Icy debris fans may become thick enough to become glaciers with splay crevasse systems. Fans developed below larger, more complex catchments are composed of higher proportions of lithic detritus resulting from temporary storage of ice and lithic detritus deposits within the catchment. Episodic outbursts of meltwater from the icecap may mix with the stored sediments and mobilize icy debris flows (mixture of ice and lithic clasts) onto the fans. Our observations indicate that the entire evolutionary cycle of icy debris fans probably occurs during an early paraglacial interval (i.e., decades to 100 years). Observations comparing avalanche frequency, volume, and fan morphologic evolution at the Alaska site between 2006 and 2010 illustrate complex response between icy debris fans even within the same cirque - where one fan may be growing while others are downwasting because of differences in ice supply controlled by their respective catchments and icecap contributions. As ice supply from the icecap diminishes through time, icy debris fans rapidly downwaste and eventually evolve into talus cones that receive occasional but ephemeral ice avalanches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale simulations and analytical theory have been combined to obtain the nonequilibrium velocity distribution, f(v), of randomly accelerated particles in suspension. The simulations are based on an event-driven algorithm, generalized to include friction. They reveal strongly anomalous but largely universal distributions, which are independent of volume fraction and collision processes, which suggests a one-particle model should capture all the essential features. We have formulated this one-particle model and solved it analytically in the limit of strong damping, where we find that f (v) decays as 1/v for multiple decades, eventually crossing over to a Gaussian decay for the largest velocities. Many particle simulations and numerical solution of the one-particle model agree for all values of the damping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soybean lipoxygenase-1 is a model for lipoxygenase activity. While the mechanism of oxygenation is understood, the substrate binding mechanism has not yet been elucidated. Two putative binding mechanisms are the ¿head-first¿ and ¿tail-first¿ models, in which the carboxy-terminus or the methyl terminus of the fatty acid substrate is inserted into the active site while the remainder of the molecule protrudes from the surface, respectively. Previous work has demonstrated that derivatization of fatty acid substrates with D-tryptophan increases active site affinity. It has also been shown that while polyunsaturated fatty acids are the natural substrates of lipoxygenases, monounsaturated fatty acids can be oxygenated at a much slower rate. Starting with a monounsaturated fatty acid, oleic acid, as a platform, the molecule N-oleoyl-D-tryptophan (ODT) was synthesized with the anticipation of it being a potent competitive substrate-analogue inhibitor that could be used to discern the substrate binding mechanism. Inhibition kinetics demonstrated that this molecule functions as a partially competitive inhibitor, through an unknown mechanism. The implication behind partially competitive inhibition is that substrate and inhibitor molecules can bind simultaneously to the enzyme, which alludes to the presence of an allosteric binding domain. To investigate the possibility of an inhibitor binding site on the non-catalytic subunit, limited proteolysis was used to cleave the subunits apart which should have eliminated inhibition. Interestingly, it was observed that at high substrate concentrations the inhibitor was completely ineffective, but at low substrate concentrations the inhibitor maintained its standard efficacy. A satisfactory explanation for these results has not yet been determined.