3 resultados para Abnormal Subgroups
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Let G be a locally finite group satisfying the condition given in the title and suppose that G is not nilpotent-by-Chernikov. It is shown that G has a section S that is not nilpotent-by-Chernikov, where S is either a p-group or a semi-direct product of the additive group A of a locally finite field F by a subgroup K of the multiplicative group of F, where K acts by multiplication on A and generates F as a ring. Non-(nilpotent-by-Chernikov) extensions of this latter kind exist and are described in detail.
Resumo:
It is shown that if G is a hypercentral group with all subgroups subnormal, and if the torsion subgroup of G is a pi-group for some finite set pi of primes, then G is nilpotent. In the case where G is not hypercentral there is a section of G that is much like one of the well-known Heineken-Mohamed groups. It is also shown that if G is a residually nilpotent group with all subgroups subnormal whose torsion subgroup satisfies the above condition then G is nilpotent.
Resumo:
The structure of groups which have at most two isomorphism classes of derived subgroups (D-2-groups) is investigated. A complete description of D-2-groups is obtained in the case where the derived subgroup is finite: the solution leads an interesting number theoretic problem. In addition, detailed information is obtained about soluble D-2-groups, especially those with finite rank, where algebraic number fields play an important role. Also, detailed structural information about insoluble D-2-groups is found, and the locally free D-2-groups are characterized.