4 resultados para API (Application Programming Interface)

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research with several species of nonhuman primates suggests sophisticated motor-planning abilities observed in human adults may be ubiquitous among primates. However, there is considerable variability in the extent to which these abilities are expressed across primate species. In the present experiment, we explore whether the variability in the expression of anticipatory motor-planning abilities may be attributed to cognitive differences (such as tool use abilities) or whether they may be due to the consequences of morphological differences (such as being able to deploy a precision grasp). We compared two species of New World monkeys that differ in their tool use abilities and manual dexterity: squirrel monkeys, Saimiri sciureus (less dexterous with little evidence for tool use) and tufted capuchins, Sapajus apella (more dexterous and known tool users). The monkeys were presented with baited cups in an untrained food extraction task. Consistent with the morphological constraint hypothesis, squirrel monkeys frequently showed second-order motor planning by inverting their grasp when picking up an inverted cup, while capuchins frequently deployed canonical upright grasping postures. Findings suggest that the lack of ability for precision grasping may elicit more consistent second-order motor planning, as the squirrel monkeys (and other species that have shown a high rate of second-order planning) have fewer means of compensating for inefficient initial postures. Thus, the interface between morphology and motor planning likely represents an important factor for understanding both the ontogenetic and phylogenetic origins of sophisticated motor-planning abilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project addresses the unreliability of operating system code, in particular in device drivers. Device driver software is the interface between the operating system and the device's hardware. Device drivers are written in low level code, making them difficult to understand. Almost all device drivers are written in the programming language C which allows for direct manipulation of memory. Due to the complexity of manual movement of data, most mistakes in operating systems occur in device driver code. The programming language Clay can be used to check device driver code at compile-time. Clay does most of its error checking statically to minimize the overhead of run-time checks in order to stay competitive with C's performance time. The Clay compiler can detect a lot more types of errors than the C compiler like buffer overflows, kernel stack overflows, NULL pointer uses, freed memory uses, and aliasing errors. Clay code that successfully compiles is guaranteed to run without failing on errors that Clay can detect. Even though C is unsafe, currently most device drivers are written in it. Not only are device drivers the part of the operating system most likely to fail, they also are the largest part of the operating system. As rewriting every existing device driver in Clay by hand would be impractical, this thesis is part of a project to automate translation of existing drivers from C to Clay. Although C and Clay both allow low level manipulation of data and fill the same niche for developing low level code, they have different syntax, type systems, and paradigms. This paper explores how C can be translated into Clay. It identifies what part of C device drivers cannot be translated into Clay and what information drivers in Clay will require that C cannot provide. It also explains how these translations will occur by explaining how each C structure is represented in the compiler and how these structures are changed to represent a Clay structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay minerals have a fundamental importance in many processes in soils and sediments such as the bioavailability of nutrients, water retention, the adsorption of common pollutants, and the formation of an impermeable barrier upon swelling. Many of the properties of clay minerals are due to the unique environment present at the clay mineral/water interface. Traditional techniques such as X-ray diffraction (XRD) and absorption isotherms have provided a wealth of information about this interface but have suffered from limitations. The methods and results presented herein are designed to yield new experimental information about the clay mineral/water interface.A new method of studying the swelling dynamics of clay minerals was developed using in situ atomic force microscopy (AFM). The preliminary results presented here demonstrate that this technique allows one to study individual clay mineral unit layers, explore the natural heterogeneities of samples, and monitor swelling dynamics of clay minerals in real time. Cation exchange experiments were conducted monitoring the swelling change of individual nontronite quasi-crystals as the chemical composition of the surrounding environment was manipulated several times. A proof of concept study has shown that the changes in swelling are from the exchange of interlayer cations and not from the mechanical force of replacing the solution in the fluid cell. A series of attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR) experiments were performed to gain a better understanding of the organization of water within the interlayer region of two Fe-bearing clay minerals. These experiments made use of the Subtractive Kramers-Kronig (SKK) Transform and the calculation of difference spectra to obtain information about interfacial water hidden within the absorption bands of bulk water. The results indicate that the reduction of structural iron disrupts the organization of water around a strongly hydrated cation such as sodium as the cation transitions from an outer-sphere complex with the mineral surface to an inner-sphere complex. In the case of a less strongly hydrated cation such as potassium, reduction of structural iron actually increases the ordering of water molecules at the mineral surface. These effects were only noticed with the reduction of iron in the tetrahedral sheet close to the basal surface where the increased charge density is localized closer to the cations in the interlayer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States¿ Federal and State laws differentiate between acceptable (or, legal) and unacceptable (illegal) behavior by prescribing restrictive punishment to citizens and/or groups that violate these established rules. These regulations are written to treat every person equally and to fairly serve justice; furthermore, the sanctions placed on offenders seek to reform illegal behavior through limitations on freedoms and rehabilitative programs. Despite the effort to treat all offenders fairly regardless of social identity categories (e.g., sex, race, ethnicity, socioeconomic status, age, ability, and gender and sexual orientation) and to humanely eliminate illegal behavior, the American penal system perpetuates de facto discrimination against a multitude of peoples. Furthermore, soaring recidivism rates caused by unsuccessful re-entry of incarcerated offenders puts economic stress on Federal and State budgets. For these reasons, offenders, policy-makers, and law-abiding citizens should all have a vested interest in reforming the prison system. This thesis focuses on the failure of the United States corrections system to adequately address the gender-specific needs of non-violent female offenders. Several factors contribute to the gender-specific discrimination that women experience in the criminal justice system: 1) Trends in female criminality that skew women¿s crime towards drug-related crimes, prostitution, and property offenses; 2) Mandatory minimum sentences for drug crimes that are disproportionate to the crime committed; 3) So-called ¿gender-neutral¿ educational, vocational, substance abuse, and mental health programming that intends to equally rehabilitate men and women, but in fact favors men; and 4) The isolating nature of prison structures that inhibits smooth re-entry into society. I argue that a shift in the placement and treatment of non-violent female offenders is necessary for effective rehabilitation and for reducing recidivism rates. The first component of this shift is the design and implementation of gender- responsive treatment (GRT) rather than gender-neutral approaches in rehabilitative programming. The second shift is the utilization of alternatives to incarceration, which provide both more humane treatment of offenders and smoother reintegration to society. Drawing on recent scholarship, information from prison advocacy organizations, and research with men in an alternative program, I provide a critical analysis of current policies and alternative programs, and suggest several proposals for future gender- responsive programs in prisons and in place of incarceration. I argue that the expansion of gender-responsive programming and alternatives to incarceration respond to the marginalization of female offenders, address concerns about the financial sustainability of the United States criminal justice system, and tackle high recidivism rates.