2 resultados para ADDUCT

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AM1 and PM3 molecular orbital methods have been utilized to investigate the reactions of CH20H with NO and NO2 PM3 and AM1 calculated heats of formation differ from experimental values by 8.6 and 18.8 kcal mol-', respectively. The dominant reaction of CH20H with NO is predicted to produce the adduct HOCH2N0, supporting the hypothesis of Pagsberg, Munk, Anastasi, and Simpson. Calculated activation energies for the NO2 system predict the formation of the adducts HOCH2N02 and HOCH20N0. In addition, the PM3 calculations predict that the abstraction reaction producing CH20 and HN02 is more likely than one producing CH20 and HONO from reactions of CH20H with NO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of isoprene by the hydroxyl radical leads to tropospheric ozone formation. Consequently, a more complete understanding of this reaction could lead to better models of regional air quality, a better understanding of aerosol formation, and a better understanding of reaction kinetics and dynamics. The most common first step in the oxidation of isoprene is the formation of an adduct, with the hydroxyl radical adding to one of four unsaturated carbon atoms in isoprene. In this paper, we discuss how the initial conformations of isoprene, s-trans and s-gauche, influences the pathways to adduct formation. We explore the formation of pre-reactive complexes at low and high temperatures, which are often invoked to explain the negative temperature dependence of this reaction’s kinetics. We show that at higher temperatures the free energy surface indicates that a pre-reactive complex is unlikely, while at low temperatures the complex exists on two reaction pathways. The theoretical results show that at low temperatures all eight pathways possess negative reaction barriers, and reaction energies that range from −36.7 to −23.0 kcal·mol−1. At temperatures in the lower atmosphere, all eight pathways possess positive reaction barriers that range from 3.8 to 6.0 kcal·mol−1 and reaction energies that range from −28.8 to −14.4 kcal·mol−1.