11 resultados para 091402 Geomechanics and Resources Geotechnical Engineering

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Students frequently hold a number of misconceptions related to temperature, heat and energy. There is not currently a concept inventory with sufficiently high internal reliability to assess these concept areas for research purposes. Consequently, there is little data on the prevalence of these misconceptions amongst undergraduate engineering students. PURPOSE (HYPOTHESIS) This work presents the Heat and Energy Concept Inventory (HECI) to assess prevalent misconceptions related to: (1) Temperature vs. Energy, (2) Temperature vs. Perceptions of Hot and Cold, (3) Factors that affect the Rate vs. Amount of Heat Transfer and (4) Thermal Radiation. The HECI is also used to document the prevalence of misconceptions amongst undergraduate engineering students. DESIGN/METHOD Item analysis, guided by classical test theory, was used to refine individual questions on the HECI. The HECI was used in a one group, pre-test-post-test design to assess the prevalence and persistence of targeted misconceptions amongst a population of undergraduate engineering students at diverse institutions. RESULTS Internal consistency reliability was assessed using Kuder-Richardson Formula 20; values were 0.85 for the entire instrument and ranged from 0.59 to 0.76 for the four subcategories of the HECI. Student performance on the HECI went from 49.2% to 54.5% after instruction. Gains on each of the individual subscales of the HECI, while generally statistically significant, were similarly modest. CONCLUSIONS The HECI provides sufficiently high estimates of internal consistency reliability to be used as a research tool to assess students' understanding of the targeted concepts. Use of the instrument demonstrates that student misconceptions are both prevalent and resistant to change through standard instruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The curriculum of the Bucknell University Chemical Engineering Department includes a required senior year capstone course titled Process Engineering, with an emphasis on process design. For the past ten years library research has been a significant component of the coursework, and students working in teams meet with the librarian throughout the semester to explore a wide variety of information resources required for their project. The assignment has been the same from 1989 to 1999. Teams of students are responsible for designing a safe, efficient, and profitable process for the dehydrogenation of ethylbenzene to styrene monomer. A series of written reports on their chosen process design is a significant course outcome. While the assignment and the specific chemical technology have not changed radically in the past decade, the process of research and discovery has evolved considerably. This paper describes the solutions offered in 1989 to meet the information needs of the chemical engineering students at Bucknell University, and the evolution in research brought about by online databases, electronic journals, and the Internet, making the process of discovery a completely different experience in 1999.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of zeolite amendment for enhanced sorption capacity on the consolidation behavior and hydraulic conductivity, k, of a typical soil-bentonite (SB) backfill for vertical cutoff walls was evaluated via laboratory testing. The consolidation behavior and k of test specimens containing fine sand, 5.8 % (dry wt.) sodium bentonite, and 0, 2, 5, or 10 % (dry wt.) of one of three types of zeolite (clinoptilolite, chabazite-lower bed, or chabazite-upper bed) were measured using fixed-ring oedometers, and k also was measured on separate specimens using a flexible-wall permeameter. The results indicated that addition of a zeolite had little impact on either the consolidation behavior or the k of the backfill, regardless of the amount or type of zeolite. For example, the compression index, Cc, for the unamended backfill specimen was 0.24, whereas values of Cc for the zeolite amended specimens were in the range 0.19 ≤ Cc ≤ 0.23. Similarly, the k for the unamended specimen based on flexible-wall tests was 2.4 x 10-10 m/s, whereas values of k for zeolite amended specimens were in the range 1.2 x 10-10 ≤ k ≤ 3.9 x 10-10 m/s. The results of the study suggest that enhancing the sorption capacity of typical SB backfills via zeolite amendment is not likely to have a significant effect on the consolidation behavior or k of the backfill, provided that the amount of zeolite added is small (≤ 10 %).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to examine ways in which pedagogy and gender of instructor impact the development of self-regulated learning strategies as assessed by the Motivated Strategies for Learning Questionnaire (MSLQ) in male and female undergraduate engineering students. Pedagogy was operationalized as two general formats: lecture plus active learning techniques or problem-base/project-based learning. One hundred seventy-six students from four universities participated in the study. Within-group analyses found significant differences with regard to pedagogy, instructors’ gender, and student gender on the learning strategies and motivation subscales as operationalized by the MSLQ. Male and females students reported significant post-test differences with regard to the gender of instructor and the style of pedagogy. The results of this study showed a pattern where more positive responses for students of both genders were found with the same-gendered instructor. The results also suggested that male students responded more positively to project and problem-based courses with changes evidenced in motivation strategies and resource management. Female students showed decreases in resource management in these two types of courses. Further, female students reported increases in the lecture with active learning courses.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a description of integrated engineering workstations (IEW’s) used in undergraduate electrical engineering laboratories. The IEW’s are used for the design, analysis, and testing of engineering systems. Examples of laboratory experiments and software programs are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, ne, or a restrictive tortuosity factor, tr, in the formulation of Fick's first law for diffusion. Both ne and tr have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for changes in hydraulic conductivity, k, of two model soil-bentonite (SB) backfills subjected to wet-dry cycling was investigated. The backfills were prepared with the same base soil (clean, fine sand) but different bentonite contents (2.7 and 5.6 dry wt %). Saturation (S), volume change, and k of consolidated backfill specimens (effective stress = 24 kPa) were evaluated over three to seven cycles in which the matric suction, Ym, in the drying stage ranged from 50 to 700 kPa. Both backfills exhibited susceptibility to degradation in k caused by wet-dry cycling. Mean values of k for specimens dried at Ym = 50 kPa (S = 30-60 % after drying) remained low after two cycles, but increased by 5- to 300-fold after three or more cycles. Specimens dried at Ym ≥ 150 kPa (S < 30 % after drying) were less resilient and exhibited 500- to 10 000-fold increases in k after three or more cycles. The greater increases in k for these specimens correlated with greater vertical shrinkage upon drying. The findings suggest that increases in hydraulic conductivity due to wet-dry cycling may be a concern for SB vertical barriers located within the zone of a fluctuating groundwater table.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What can we learn about the way that folk storytelling operates for tellers and audience members by examining the telling of stories by characters within such narratives? I examine Maithil women’s folktales in which stories of women’s suffering at the hands of other women are first suppressed and later overheard by men who have the power to alleviate such suffering. Maithil women are pitted against one another in their pursuit of security and resources in the context of patrilineal formations. The solidarities such women nonetheless form—in part through sharing stories and keeping each other’s secrets—serve to mitigate their suffering and maintain a counter-system of ideational patterns and practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the chemical compatibility of model soil-bentonite backfills containing multiswellable bentonite (MSB) relative to that of similar backfills containing untreated sodium (Na) bentonite or a commercially available, contaminant resistant bentonite (SW101). Flexible-wall tests were conducted on consolidated backfill specimens (effective stress =34.5 kPa) containing clean sand and 4.5–5.7% bentonite (by dry weight) using tap water and calcium chloride (CaCl2) solutions (10–1,000 mM) as the permeant liquids. Final values of hydraulic conductivity (k) and intrinsic permeability (K) to the CaCl2 solutions were determined after achieving both short-term termination criteria as defined by ASTM D5084 and long-term termination criteria for chemical equilibrium between the influent and effluent. Specimens containing MSB exhibited the smallest increases in k and K upon permeation with a given CaCl2 solution relative to specimens containing untreated Na bentonite or SW101. However, none of the specimens exhibited more than a five-fold increase in k or K, regardless of CaCl2 concentration or bentonite type. Final k values for specimens permeated with a given CaCl2 solution after permeation with tap water were similar to those for specimens of the same backfill permeated with only the CaCl2 solution, indicating that the order of permeation had no significant effect on k. Also, final k values for all specimens were within a factor of two of the k measured after achieving the ASTM D5084 termination criteria. Thus, use of only the ASTM D5084 criteria would have been sufficient to obtain reasonable estimates of long-term hydraulic conductivity for the specimens in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eight pieces constituting this Meeting Report are summaries of presentations made during a panel session at the 2011 Association for Practical and Professional Ethics (APPE) annual meeting held between March 3rd and 6th in Cincinnati. Lisa Newton organized the session and served as chair. The panel of eight consisted both of pioneers in the field and more recent arrivals. It covered a range of topics from how the field has developed to where it should be going, from identification of issues needing further study to problems of training the next generation of engineers and engineering-ethics scholars.