9 resultados para H2O
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.
Resumo:
The Gaussian-3 method developed by Pople and coworkers has been used to calculate the free energy of neutral octamer clusters of water, (H2O)8. The most energetically stable structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. Cubic structures are favored over noncubic structures over all temperature ranges studied. The D2d cubic structure is the lowest free energy structure and dominates the potential energy and free energy hypersurfaces from 0 K to 298 K.
Resumo:
It has been speculated that the presence of OH(H2O)n clusters in the troposphere could have significant effects on the solar absorption balance and the reactivity of the hydroxyl radical. We have used the G3 and G3B3 model chemistries to model the structures and predict the frequencies of hydroxyl radical/water clusters containing one to five water molecules. The reaction between hydroxyl radical clusters and methane was examined as a function of water cluster size to gain an understanding of how cluster size affects the hydroxyl radical reactivity.
Resumo:
Accurate anharmonic experimental vibrational frequencies for water clusters consisting of 2−5 water molecules have been predicted on the basis of comparing different methods with MP2/aug-cc-pVTZ calculated and experimental anharmonic frequencies. The combination of using HF/6-31G* scaled frequencies for intramolecular modes and anharmonic frequencies for intermolecular modes gives excellent agreement with experiment for the water dimer and trimer and are as good as the expensive anharmonic MP2 calculations. The water trimer, the cyclic Ci and S4 tetramers, and the cyclic pentamer all have unique peaks in the infrared spectrum between 500 and 800 cm-1 and between 3400 and 3700 cm-1. Under the right experimental conditions these different clusters can be uniquely identified using high-resolution IR spectroscopy.
Resumo:
Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS2(H2O)n, where n = 1–4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS2(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS2(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)/6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS2 in the atmosphere, the concentrations of these clusters are predicted to be on the order of 105CS2(H2O) clusters∙cm−3 and 102 CS2(H2O)2 clusters∙cm−3 at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS2(H2O)n structures predicted to be present in a low-temperature molecular beam experiment.
Resumo:
The hydroperoxy radical (HO2) plays a critical role in Earth's atmospheric chemistry as a component of many important reactions. The self-reaction of hydroperoxy radicals in the gas phase is strongly affected by the presence of water vapor. In this work, we explore the potential energy surfaces of hydroperoxy radicals hydrogen bonded to one or two water molecules, and predict atmospheric concentrations and vibrational spectra of these complexes. We predict that when the HO2 concentration is on the order of 108molecules·cm-3 at 298 K, that the number of HO2···H2O complexes is on the order of 107molecules·cm-3 and the number of HO2···(H2O)2 complexes is on the order of 106molecules·cm-3. Using the computed abundance of HO2···H2O, we predict that, at 298 K, the bimolecular rate constant for HO2···H2O + HO2 is about 10 times that for HO2 + HO2.
Resumo:
The Gaussian-3 (G3) model chemistry method has been used to calculate the relative ΔG° values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3−5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20 736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.
Resumo:
An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.
Resumo:
We have studied the structure and stability of (H3O+)(H2O)8 clusters using a combination of molecular dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within 2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to 298.15 K, the global minimum is predicted to be a tree-like structure with one dangling singly coordinated water molecule. Above 298.15 K, higher entropy tree-like isomers with two or more singly coordinated water molecules are favored. These assignments are generally consistent with experimental IR spectra of (H3O+)(H2O)8 obtained at 150 K.