2 resultados para [JEL:C70] Mathematical and Quantitative Methods - Game Theory and Bargaining Theory - General

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Advances in biotechnology have shed light on many biological processes. In biological networks, nodes are used to represent the function of individual entities within a system and have historically been studied in isolation. Network structure adds edges that enable communication between nodes. An emerging fieldis to combine node function and network structure to yield network function. One of the most complex networks known in biology is the neural network within the brain. Modeling neural function will require an understanding of networks, dynamics, andneurophysiology. It is with this work that modeling techniques will be developed to work at this complex intersection. Methods: Spatial game theory was developed by Nowak in the context of modeling evolutionary dynamics, or the way in which species evolve over time. Spatial game theory offers a two dimensional view of analyzingthe state of neighbors and updating based on the surroundings. Our work builds upon this foundation by studying evolutionary game theory networks with respect to neural networks. This novel concept is that neurons may adopt a particular strategy that will allow propagation of information. The strategy may therefore act as the mechanism for gating. Furthermore, the strategy of a neuron, as in a real brain, isimpacted by the strategy of its neighbors. The techniques of spatial game theory already established by Nowak are repeated to explain two basic cases and validate the implementation of code. Two novel modifications are introduced in Chapters 3 and 4 that build on this network and may reflect neural networks. Results: The introduction of two novel modifications, mutation and rewiring, in large parametricstudies resulted in dynamics that had an intermediate amount of nodes firing at any given time. Further, even small mutation rates result in different dynamics more representative of the ideal state hypothesized. Conclusions: In both modificationsto Nowak's model, the results demonstrate the network does not become locked into a particular global state of passing all information or blocking all information. It is hypothesized that normal brain function occurs within this intermediate range and that a number of diseases are the result of moving outside of this range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a seller who owns two capacity-constrained resources and markets two products (components) corresponding to these resources as well as a bundle comprising the two components. In an environment where all customers agree that one of the two components is of higher quality than the other and that the bundle is of the highest quality, we derive the seller's optimal bundling strategy. We demonstrate that the optimal solution depends on the absolute and relative availabilities of the two resources as well as upon the extent of subadditivity of the quality of the products. The possible strategies that can arise as equilibrium behavior include a pure components strategy, a partial- or full-spectrum mixed bundling strategy, and a pure bundling strategy, where the latter strategy is optimal when capacities are unconstrained. These conclusions are contrary to findings in the prior literature on bundling that demonstrated the unambiguous dominance of the full-spectrum mixed bundling strategy. Thus, our work expands the frontier of bundling to an environment with vertically differentiated components and limited resources. We also explore how the bundling strategies change as we introduce an element of horizontal differentiation wherein different types of customers value the available components differently.