4 resultados para Uniform system
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
Soil erosion models and soil erosion risk maps are often used as indicators to assess potential soil erosion in order to assist policy decisions. This paper shows the scientific basis of the soil erosion risk map of Switzerland and its application in policy and practice. Linking a USLE/RUSLE-based model approach (AVErosion) founded on multiple flow algorithms and the unit contributing area concept with an extremely precise and high-resolution digital terrain model (2 m × 2 m grid) using GIS allows for a realistic assessment of the potential soil erosion risk, on single plots, i.e. uniform and comprehensive for the agricultural area of Switzerland (862,579 ha in the valley area and the lower mountain regions). The national or small-scale soil erosion prognosis has thus reached a level heretofore possible only in smaller catchment areas or single plots. Validation was carried out using soil loss data from soil erosion damage mappings in the field from long-term monitoring in different test areas. 45% of the evaluated agricultural area of Switzerland was classified as low potential erosion risk, 12% as moderate potential erosion risk, and 43% as high potential erosion risk. However, many of the areas classified as high potential erosion risk are located at the transition from valley to mountain zone, where many areas are used as permanent grassland, which drastically lowers their current erosion risk. The present soil erosion risk map serves on the one hand to identify and prioritise the high-erosion risk areas, and on the other hand to promote awareness amongst farmers and authorities. It was published on the internet and will be made available to the authorities in digital form. It is intended as a tool for simplifying and standardising enforcement of the legal framework for soil erosion prevention in Switzerland. The work therefore provides a successful example of cooperation between science, policy and practice.
Resumo:
TIE2 is a vascular endothelial-specific receptor tyrosine kinase essential for the regulation of vascular network formation and remodeling. Previously, we have shown that the 1.2-kb 5' flanking region of the TIE2 promoter is capable of directing beta-galactosidase reporter gene expression specifically into a subset of endothelial cells (ECs) of transgenic mouse embryos. However, transgene activity was restricted to early embryonic stages and not detectable in adult mice. Herein we describe the identification and characterization of an autonomous endothelial-specific enhancer in the first intron of the mouse TIE2 gene. Furthermore, combination of the TIE2 promoter with an intron fragment containing this enhancer allows it to target reporter gene expression specifically and uniformly to virtually all vascular ECs throughout embryogenesis and adulthood. To our knowledge, this is the first time that an in vivo expression system has been assembled by which heterologous genes can be targeted exclusively to the ECs of the entire vasculature. This should be a valuable tool to address the function of genes during physiological and pathological processes of vascular ECs in vivo. Furthermore, we were able to identify a short region critical for enhancer function in vivo that contains putative binding sites for Ets-like transcription factors. This should, therefore, allow us to determine the molecular mechanisms underlying the vascular-EC-specific expression of the TIE2 gene.
Resumo:
BACKGROUND: Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. RESULTS: A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 mug/cm(2). The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 mug/cm(2)) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 mug/cm(2 )ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. CONCLUSION: The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.
Resumo:
BACKGROUND: We evaluated Swiss slaughterhouse data for integration in a national syndromic surveillance system for the early detection of emerging diseases in production animals. We analysed meat inspection data for cattle, pigs and small ruminants slaughtered between 2007 and 2012 (including emergency slaughters of sick/injured animals); investigating patterns in the number of animals slaughtered and condemned; the reasons invoked for whole carcass condemnations; reporting biases and regional effects. RESULTS: Whole carcass condemnation rates were fairly uniform (1-2‰) over time and between the different types of production animals. Condemnation rates were much higher and less uniform following emergency slaughters. The number of condemnations peaked in December for both cattle and pigs, a time when individuals of lower quality are sent to slaughter when hay and food are limited and when certain diseases are more prevalent. Each type of production animal was associated with a different profile of condemnation reasons. The most commonly reported one was "severe lesions" for cattle, "abscesses" for pigs and "pronounced weight loss" for small ruminants. These reasons could constitute valuable syndromic indicators as they are unspecific clinical manifestations of a large range of animal diseases (as well as potential indicators of animal welfare). Differences were detected in the rate of carcass condemnation between cantons and between large and small slaughterhouses. A large percentage (>60% for all three animal categories) of slaughterhouses operating never reported a condemnation between 2007 and 2012, a potential indicator of widespread non-reporting bias in our database. CONCLUSIONS: The current system offers simultaneous coverage of cattle, pigs and small ruminants for the whole of Switzerland; and traceability of each condemnation to its farm of origin. The number of condemnations was significantly linked to the number of slaughters, meaning that the former should be always be offset by the later in analyses. Because this denominator is only communicated at the end of the month, condemnations may currently only be monitored on a monthly basis. Coupled with the lack of timeliness (30-60 days delay between condemnation and notification), this limits the use of the data for early-detection.