47 resultados para Synchronization algorithms

em BORIS: Bern Open Repository and Information System - Berna - Sui


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clock synchronization is critical for the operation of a distributed wireless network system. In this paper we investigate on a method able to evaluate in real time the synchronization offset between devices down to nanoseconds (as needed for positioning). The method is inspired by signal processing algorithms and relies on fine-grain time information obtained during the reconstruction of the signal at the receiver. Applying the method to a GPS-synchronized system show that GPS-based synchronization has high accuracy potential but still suffers from short-term clock drift, which limits the achievable localization error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Our method to evaluate the synchronization accuracy is inspired by signal processing algorithms and relies on fine grain time information. The method is able to calculate the clock offset and skew between devices with nanosecond accuracy in real time. It was implemented using software defined radio technology. We demonstrate that GPS-based synchronization suffers from remaining clock offset in the range of a few hundred of nanoseconds but the clock skew is negligible. Finally, we determine a corresponding lower bound on the expected positioning error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have shown that a patient's antibody reaction in a confirmatory line immunoassay (INNO-LIATM HIV I/II Score, Innogenetics) provides information on the duration of infection. Here, we sought to further investigate the diagnostic specificity of various Inno-Lia algorithms and to identify factors affecting it. Methods Plasma samples of 714 selected patients of the Swiss HIV Cohort Study infected for longer than 12 months and representing all viral clades and stages of chronic HIV-1 infection were tested blindly by Inno-Lia and classified as either incident (up to 12 m) or older infection by 24 different algorithms. Of the total, 524 patients received HAART, 308 had HIV-1 RNA below 50 copies/mL, and 620 were infected by a HIV-1 non-B clade. Using logistic regression analysis we evaluated factors that might affect the specificity of these algorithms. Results HIV-1 RNA <50 copies/mL was associated with significantly lower reactivity to all five HIV-1 antigens of the Inno-Lia and impaired specificity of most algorithms. Among 412 patients either untreated or with HIV-1 RNA ≥50 copies/mL despite HAART, the median specificity of the algorithms was 96.5% (range 92.0-100%). The only factor that significantly promoted false-incident results in this group was age, with false-incident results increasing by a few percent per additional year. HIV-1 clade, HIV-1 RNA, CD4 percentage, sex, disease stage, and testing modalities exhibited no significance. Results were similar among 190 untreated patients. Conclusions The specificity of most Inno-Lia algorithms was high and not affected by HIV-1 variability, advanced disease and other factors promoting false-recent results in other STARHS. Specificity should be good in any group of untreated HIV-1 patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory verbal hallucinations (AVH) in schizophrenia patients assumingly result from a state inadequate activation of the primary auditory system. We tested brain responsiveness to auditory stimulation in healthy controls (n=26), and in schizophrenia patients that frequently (n=18) or never (n=11) experienced AVH. Responsiveness was assessed by driving the EEG with click-tones at 20, 30 and 40Hz. We compared stimulus induced EEG changes between groups using spectral amplitude maps and a global measure of phase-locking (GFS). As expected, the 40Hz stimulation elicited the strongest changes. However, while controls and non-hallucinators increased 40Hz EEG activity during stimulation, a left-lateralized decrease was observed in the hallucinators. These differences were significant (p=.02). As expected, GFS increased during stimulation in controls (p=.08) and non-hallucinating patients (p=.06), which was significant when combining the two groups (p=.01). In contrast, GFS decreased with stimulation in hallucinating patients (p=0.13), resulting in a significantly different GFS response when comparing subjects with and without AVH (p<.01). Our data suggests that normally, 40Hz stimulation leads to the activation of a synchronized network representing the sensory input, but in hallucinating patients, the same stimulation partly disrupts ongoing activity in this network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have previously demonstrated that a patient's antibody reaction pattern in a confirmatory line immunoassay (INNO-LIA™ HIV I/II Score) provides information on the duration of infection, which is unaffected by clinical, immunological and viral variables. In this report we have set out to determine the diagnostic performance of Inno-Lia algorithms for identifying incident infections in patients with known duration of infection and evaluated the algorithms in annual cohorts of HIV notifications. Methods Diagnostic sensitivity was determined in 527 treatment-naive patients infected for up to 12 months. Specificity was determined in 740 patients infected for longer than 12 months. Plasma was tested by Inno-Lia and classified as either incident (< = 12 m) or older infection by 26 different algorithms. Incident infection rates (IIR) were calculated based on diagnostic sensitivity and specificity of each algorithm and the rule that the total of incident results is the sum of true-incident and false-incident results, which can be calculated by means of the pre-determined sensitivity and specificity. Results The 10 best algorithms had a mean raw sensitivity of 59.4% and a mean specificity of 95.1%. Adjustment for overrepresentation of patients in the first quarter year of infection further reduced the sensitivity. In the preferred model, the mean adjusted sensitivity was 37.4%. Application of the 10 best algorithms to four annual cohorts of HIV-1 notifications totalling 2'595 patients yielded a mean IIR of 0.35 in 2005/6 (baseline) and of 0.45, 0.42 and 0.35 in 2008, 2009 and 2010, respectively. The increase between baseline and 2008 and the ensuing decreases were highly significant. Other adjustment models yielded different absolute IIR, although the relative changes between the cohorts were identical for all models. Conclusions The method can be used for comparing IIR in annual cohorts of HIV notifications. The use of several different algorithms in combination, each with its own sensitivity and specificity to detect incident infection, is advisable as this reduces the impact of individual imperfections stemming primarily from relatively low sensitivities and sampling bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis of a functional disconnection of neuro-cognitive networks in patients with mild cognitive impairment (MCI) and Alzheimer Dementia was investigated using baseline resting EEG data. EEG databases from New York (264 subjects) and Stockholm (155 subjects), including healthy controls and patients with varying degrees of cognitive decline or Alzheimer Dementia were analyzed using Global Field Synchronization (GFS), a novel measure of global EEG synchronization. GFS reflects the global amount of phase-locked activity at a given frequency by a single number; it is independent of the recording reference and of implicit source models. Patients showed decreased GFS values in Alpha, Beta, and Gamma frequency bands, and increased GFS values in the Delta band, confirming the hypothesized disconnection syndrome. The results are discussed within the framework of current knowledge about the functional significance of the affected frequency bands.