10 resultados para Nonlinear models
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
Tables of estimated regression coefficients, usually accompanied by additional information such as standard errors, t-statistics, p-values, confidence intervals or significance stars, have long been the preferred way of communicating results from statistical models. In recent years, however, the limits of this form of exposition have been increasingly recognized. For example, interpretation of regression tables can be very challenging in the presence of complications such as interaction effects, categorical variables, or nonlinear functional forms. Furthermore, while these issues might still be manageable in the case of linear regression, interpretational difficulties can be overwhelming in nonlinear models such as logistic regression. To facilitate sensible interpretation of such models it is often necessary to compute additional results such as marginal effects, predictive margins, or contrasts. Moreover, smart graphical displays of results can be very valuable in making complex relations accessible. A number of helpful commands geared at supporting these tasks have been recently introduced in Stata, making elaborate interpretation and communication of regression results possible without much extra effort. Examples of such commands are -margins-, -contrasts-, and -marginsplot-. In my talk, I will discuss the capabilities of these commands and present a range of examples illustrating their use.
Resumo:
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.
Resumo:
Purpose Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. Methods Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. Results In both configurations, hvFE models predicted both stiffness (R2=0.82 for STANCE and R2=0.74 for SIDE) and femoral ultimate load (R2=0.80 for STANCE and R2=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. Conclusions The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.
Resumo:
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
Resumo:
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.