65 resultados para NEPAD - New Partnership for African Development
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
Atherosclerotic diseases such as coronary artery disease and ischaemic stroke are caused by chronic inflammation in arterial vessel walls. The complement system is part of the innate immune system. It is involved in many processes contributing to onset and development of atherosclerotic plaques up to the final stage of acute thrombotic events. This is due to its prominent role in inflammatory processes. In addition, there is increasing evidence that interactions between complement and coagulation provide a link between inflammation and thrombosis. On the other hand, the complement system also has an atheroprotective function through the clearance of apoptotic material. The knowledge of these complex mechanisms will become increasingly important, also for clinicians, since it may lead to novel therapeutic and diagnostic options. Therapies targeting the complement system have the potential to reduce tissue damage caused by acute ischaemic events. Whether early anti-inflammatory and anti-complement therapy may be able to prevent atherosclerosis, remains a hot topic for research.
Resumo:
Roughly 90% of the gas-exchange surface is formed by alveolarization of the lungs. To the best of our knowledge, the formation of new alveoli has been followed in rats only by means of morphological description or interpretation of semiquantitative data until now. Therefore, we estimated the number of alveoli in rat lungs between postnatal days 4 and 60 by unambiguously counting the alveolar openings. We observed a bulk formation of new alveoli between days 4 and 21 (17.4 times increase from 0.8 to 14.3 millions) and a second phase of continued alveolarization between days 21 and 60 (1.3 times increase to 19.3 million). The (number weighted) mean volume of the alveoli decreases during the phase of bulk alveolarization from ∼593,000 μm(3) at day 4 to ∼141,000 μm(3) at day 21, but increases again to ∼298,000 μm(3) at day 60. We conclude that the "bulk alveolarization" correlates with the mechanism of classical alveolarization (alveolarization before the microvascular maturation is completed) and that the "continued alveolarization" follows three proposed mechanisms of late alveolarization (alveolarization after microvascular maturation). The biphasic pattern is more evident for the increase in alveolar number than for the formation of new alveolar septa (estimated as the length of the free septal edge). Furthermore, a striking negative correlation between the estimated alveolar size and published data on retention of nanoparticles was detected.
European Journal of Development Research: New Avenues for Pastoral Development in sub-Saharan Africa
Resumo:
Transition and Justice examines a series of cases from across the African continent where peaceful ‘new beginnings’ were declared after periods of violence and where transitional justice institutions helped define justice and the new socio-political order. Offers a new perspective on transition and justice in Africa transcending the institutional limits of transitional justice Covers a wide range of situations, and presents a broad range of sites where past injustices are addressed Examines cases where peaceful ‘new beginnings’ have been declared after periods of violence Addresses fundamental questions about transitions and justice in societies characterized by a high degree of external involvement and internal fragmentation
Resumo:
Making research relevant to development is a complex, non-linear and often unpredictable process which requires very particular skills and strategies on the part of researchers. The National Centre of Competence in Research (NCCR) North-South provides financial and technical support for researchers so that they can effectively cooperate with policy-makers and practitioners. An analysis of 10 years of experience translating research into development practise in the NCCR North-South revealed the following four strategies as particularly relevant: a) research orientation towards the needs and interests of partners; b) implementation of promising methods and approaches; c) communication and dissemination of research results; and d) careful analysis of the political context through monitoring and learning approaches. The NCCR North-South experience shows that “doing excellent research” is just one piece of the mosaic. It is equally important to join hands with non-academic partners from the very beginning of a research project, in order to develop and test new pathways for sustainable development. Capacity building – in the North and South – enables researchers to do both: To do excellent research and to make it relevant for development.
Resumo:
Mechanical thrombectomy in ischemic stroke is of increasing interest as it is a promising strategy for fast and efficient recanalization. Several thrombectomy devices have been introduced to the armentarium of mechanical thrombectomy. Currently, new devices are under development and are continuously added to the neurointerventional tool box. Each device advocated so far has a different design and mechanical properties in terms of thrombus-device interaction. Therefore, a systematic evaluation under standardized conditions in vivo of these new devices is needed. The purpose of this study was to evaluate the efficiency, thrombus-device interaction, and potential complications of the novel Phenox CRC for distal mechanical thrombectomy in vivo. The device was evaluated in an established animal model in the swine. Recanalization rate, thromboembolic events, vasospasm, and complications were assessed. Radiopaque thrombi (2 cm length) were used for the visualization of thrombus-device interaction during retrieval. The Phenox CRC (4 mm diameter) was assessed in 15 vessel occlusions. For every occlusion a maximum of 3 retrieval attempts were performed. Complete recanalization (TICI 3/TIMI 3) was achieved in 86.7% of vessel occlusions. In 66.7% (10/15), the first retrieval attempt was successful, and in 20% (3/15), the second attempt led to complete recanalization of the parent artery. In 2 cases (13.3%) thrombus retrieval was not successful (TICI 0/TIMI 0). In 1 case (6.7%) a minor embolic event occurred in a small side branch. No distal thromboembolic event was observed during the study. Thrombus-device interaction illustrated the entrapment of the thrombus by the microfilaments and the proximal cage of the device. No significant thrombus compression was observed. No vessel perforation, dissection, or fracture of the device occurred. In this small animal study, the Phenox CRC was a safe and effective device for mechanical thrombectomy. The unique design with a combination of microfilaments and proximal cage reduces thrombus compression with a consequently high recanalization and low complication rate.
Resumo:
Isolated GH deficiency type II (IGHD II) is the autosomal dominant form of GHD. In the majority of the cases, this disorder is due to specific GH-1 gene mutations that lead to mRNA missplicing and subsequent loss of exon 3 sequences. When misspliced RNA is translated, it produces a toxic 17.5-kDa GH (Delta3GH) isoform that reduces the accumulation and secretion of wild-type-GH. At present, patients suffering from this type of disease are treated with daily injections of recombinant human GH in order to maintain normal growth. However, this type of replacement therapy does not prevent toxic effects of the Delta3GH mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. We developed a strategy involving Delta3GH isoform knockdown mediated by expression of a microRNA-30-adapted short hairpin RNA (shRNA) specifically targeting the Delta3GH mRNA of human (shRNAmir-Delta3). Rat pituitary tumor GC cells expressing Delta3GH upon doxycycline induction were transduced with shRNAmir-Delta3 lentiviral vectors, which significantly reduced Delta3GH protein levels and improved human wild-type-GH secretion in comparison with a shRNAmir targeting a scrambled sequence. No toxicity due to shRNAmir expression could be observed in cell proliferation assays. Confocal microscopy strongly suggested that shRNAmir-Delta3 enabled the recovery of GH granule storage and secretory capacity. These viral vectors have shown their ability to stably integrate, express shRNAmir, and rescue IGHD II phenotype in rat pituitary tumor GC cells, a methodology that opens new perspectives for the development of gene therapy to treat IGHD patients.
Resumo:
Trypanosomatids cause widespread disease in humans and animals. Treatment of many of these diseases is hampered by the lack of efficient and safe drugs. New strategies for drug development are therefore urgently needed. It has long been known that the single mitochondrion of trypanosomatids exhibits many unique features. Recently, the mitochondrial translation machinery of trypanosomatids has been the focus of several studies, which revealed interesting variations to the mammalian system. It is the aim of this article to review these unique features and to discuss them in the larger biological context. It is our opinion that some of these features represent promising novel targets for chemotherapeutic intervention that should be studied in more detail.
Resumo:
Cardiovascular diseases involve abnormal cell-cell interactions leading to the development of atherosclerotic plaque, which when ruptured causes massive platelet activation and thrombus formation. Parts of a loose thrombus may detach to form an embolus, blocking circulation at a more distant point. The integrins are a family of adhesive cell receptors interacting with adhesive proteins or with counterreceptors on other cells. There is now solid evidence that the major integrin on platelets, the fibrinogen receptor alpha IIb beta 3, has an important role in several aspects of cardiovascular diseases and that its regulated inhibition leads to a reduction in incidence and mortality due to these disorders. The development of alpha IIb beta 3 inhibitors is an important strategy of many pharmaceutical companies which foresee a large market for the treatment of acute conditions in surgery, the symptoms of chronic conditions and, it is hoped, maybe even the successful prophylaxis of these conditions. Although all the associated problems have not been solved, the undoubted improvements in patient care resulting from the first of these treatments in the clinic have stimulated further research on the role of integrins on other vascular cells in these processes and in the search for new inhibitors. Both the development of specific inhibitors and of mice with specific integrin subunit genes ablated have contributed to a better understanding of the function of integrins in development of the cardiovascular system.
Resumo:
The human aurora family of serine-threonine kinases comprises three members, which act in concert with many other proteins to control chromosome assembly and segregation during mitosis. Aurora dysfunction can cause aneuploidy, mitotic arrest, and cell death. Aurora kinases are strongly expressed in a broad range of cancer types. Aurora A expression in tumors is often associated with gene amplification, genetic instability, poor histologic differentiation, and poor prognosis. Aurora B is frequently expressed at high levels in a variety of tumors, often coincidently with aurora A, and expression level has also been associated with increased genetic instability and clinical outcome. Further, aurora kinase gene polymorphisms are associated with increased risk or early onset of cancer. The expression of aurora C in cancer is less well studied. In recent years, several small-molecule aurora kinase inhibitors have been developed that exhibit preclinical activity against a wide range of solid tumors. Preliminary clinical data from phase I trials have largely been consistent with cytostatic effects, with disease stabilization as the best response achieved in solid tumors. Objective responses have been noted in leukemia patients, although this might conceivably be due to inhibition of the Abl kinase. Current challenges include the optimization of drug administration, the identification of potential biomarkers of tumor sensitivity, and combination studies with cytotoxic drugs. Here, we summarize the most recent preclinical and clinical data and discuss new directions in the development of aurora kinase inhibitors as antineoplastic agents.