113 resultados para Infants -- Assist
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
The PediaFlow pediatric ventricular assist device is a miniature magnetically levitated mixed flow pump under development for circulatory support of newborns and infants (3-15 kg) with a targeted flow range of 0.3-1.5 L/min. The first generation design of the PediaFlow (PF1) was manufactured with a weight of approximately 100 g, priming volume less than 2 mL, length of 51 mm, outer diameter of 28 mm, and with 5-mm blood ports. PF1 was evaluated in an in vitro flow loop for 6 h and implanted in ovines for three chronic experiments of 6, 17, and 10 days. In the in vitro test, normalized index of hemolysis was 0.0087 ± 0.0024 g/100L. Hemodynamic performance and blood biocompatibility of PF1 were characterized in vivo by measurements of plasma free hemoglobin, plasma fibrinogen, total plasma protein, and with novel flow cytometric assays to quantify circulating activated ovine platelets. The mean plasma free hemoglobin values for the three chronic studies were 4.6 ± 2.7, 13.3 ± 7.9, and 8.8 ± 3.3 mg/dL, respectively. Platelet activation was low for portions of several studies but consistently rose along with observed animal and pump complications. The PF1 prototype generated promising results in terms of low hemolysis and platelet activation in the absence of complications. Hemodynamic results validated the magnetic bearing design and provided the platform for design iterations to meet the objective of providing circulatory support for young children with exceptional biocompatibility.
Resumo:
BACKGROUND Respiratory tract infections and subsequent airway inflammation occur early in the life of infants with cystic fibrosis. However, detailed information about the microbial composition of the respiratory tract in infants with this disorder is scarce. We aimed to undertake longitudinal in-depth characterisation of the upper respiratory tract microbiota in infants with cystic fibrosis during the first year of life. METHODS We did this prospective cohort study at seven cystic fibrosis centres in Switzerland. Between Feb 1, 2011, and May 31, 2014, we enrolled 30 infants with a diagnosis of cystic fibrosis. Microbiota characterisation was done with 16S rRNA gene pyrosequencing and oligotyping of nasal swabs collected every 2 weeks from the infants with cystic fibrosis. We compared these data with data for an age-matched cohort of 47 healthy infants. We additionally investigated the effect of antibiotic treatment on the microbiota of infants with cystic fibrosis. Statistical methods included regression analyses with a multivariable multilevel linear model with random effects to correct for clustering on the individual level. FINDINGS We analysed 461 nasal swabs taken from the infants with cystic fibrosis; the cohort of healthy infants comprised 872 samples. The microbiota of infants with cystic fibrosis differed compositionally from that of healthy infants (p=0·001). This difference was also found in exclusively antibiotic-naive samples (p=0·001). The disordering was mainly, but not solely, due to an overall increase in the mean relative abundance of Staphylococcaceae in infants with cystic fibrosis compared with healthy infants (multivariable linear regression model stratified by age and adjusted for season; second month: coefficient 16·2 [95% CI 0·6-31·9]; p=0·04; third month: 17·9 [3·3-32·5]; p=0·02; fourth month: 21·1 [7·8-34·3]; p=0·002). Oligotyping analysis enabled differentiation between Staphylococcus aureus and coagulase-negative Staphylococci. Whereas the analysis showed a decrease in S aureus at and after antibiotic treatment, coagulase-negative Staphylococci increased. INTERPRETATION Our study describes compositional differences in the microbiota of infants with cystic fibrosis compared with healthy controls, and disordering of the microbiota on antibiotic administration. Besides S aureus, coagulase-negative Staphylococci also contributed to the disordering identified in these infants. These findings are clinically important in view of the crucial role that bacterial pathogens have in the disease progression of cystic fibrosis in early life. Our findings could be used to inform future studies of the effect of antibiotic treatment on the microbiota in infants with cystic fibrosis, and could assist in the prevention of early disease progression in infants with this disorder. FUNDING Swiss National Science Foundation, Fondation Botnar, the Swiss Society for Cystic Fibrosis, and the Swiss Lung Association Bern.
Resumo:
Congenital pseudarthrosis of the tibia (CPT) is caused by an ill-defined, segmental disturbance of periosteal bone formation leading to spontaneous bowing, followed by fracture and subsequent pseudarthrosis in the first 2 years of life. The results of conventional treatment modalities (e.g., bracing, internal and external fixation and bone grafting) are associated with high failure rates in terms of persisting pseudarthrosis, malunion and impaired growth. As a more promising alternative, a more aggressive approach, including wide resection of the affected bone, reconstruction with free vascularised fibula grafts from the healthy contralateral leg and stable external fixation at a very early stage has been suggested. Between 1995 and 2007, 10 children (age 12-31 months, median 20 months) suffering from CPT were treated at our institutions according to this principle. Two patients were treated before a fracture had occurred. The length of the fibula graft was 7-9cm. End-to-end anastomoses were performed at the level of the distal tibia stump. The follow-up was 80 months (median, range 12 months to 12 years). Radiologic examination at 6 weeks postoperatively showed normal bone density and structure of the transplanted fibula in all cases and osseous consolidation at 19 of the 20 graft/tibia junctions. One nonunion was sucessfully treated with bone grafting and plate osteosynthesis. Pin-tract infection occurred in three patients. Five children sustained graft fractures that were successfully treated with internal or external fixation. Two patients developed diminished growth of the affected limb or foot; all others had equal limb length and shoe size. At long-term follow-up, tibialisation of the transplant had occurred, and normal gait and physical activities were possible in all children. We conclude that in spite of a relatively high complication rate and the reluctance to perform free flap surgery in infants at this young age, the present concept may successfully prevent the imminent severe sequelae associated with CPT.
Resumo:
ABSTRACT Aim: Intrauterine conditions may interfere with fetal brain development. We compared the neurodevelopmental outcome between infants <32 weeks gestational age after maternal preeclampsia or chorioamnionitis and controls. Methods: Case-control study on infants with maternal preeclampsia, chorioamnionitis and controls (each n = 33) matched for gestational age. Neurodevelopment at two years was assessed with the Bayley Scales of Infant Development II. Results: Ninety-nine infants were included with a median gestational age of 29 weeks (range 25-32). Median mental developmental index (MDI) was 96 in the control, 90 in the chorioamnionitis and 86 in the preeclampsia group. Preeclampsia infants had a lower MDI compared with the control group (univariate p = 0.021, multivariate p = 0.183) and with the chorioamnionitis group (univariate p = 0.242; multivariate p = 0.027). Median psychomotor index was 80.5 in the control, 80 in the preeclampsia and 85 in the chorioamnionitis group, and was not different between these three groups (p > 0.05). Chorioamnionitis or preeclampsia exposure was not associated with major neurodevelopmental impairments (cerebral palsy, MDI<70, PDI<70). Conclusion: The results of this preliminary study suggest that preeclampsia and chorioamnionitis play a relatively minor role among risk factors for adverse neurodevelopment outcome. Postnatal factors such as ventilation and bronchopulmonary dysplasia may have a greater impact on neurodevelopmental outcome.
Resumo:
Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (Paw) in proportion to neural inspiratory drive as reflected by electrical activity of the diaphragm (EAdi). Changing positive end-expiratory pressure (PEEP) impacts respiratory muscle load and function and, hence, EAdi. We aimed to evaluate how PEEP affects the breathing pattern and neuroventilatory efficiency during NAVA.
Resumo:
Despite association with lung growth and long-term respiratory morbidity, there is a lack of normative lung function data for unsedated infants conforming to latest European Respiratory Society/American Thoracic Society standards. Lung function was measured using an ultrasonic flow meter in 342 unsedated, healthy, term-born infants at a mean ± sd age of 5.1 ± 0.8 weeks during natural sleep according to the latest standards. Tidal breathing flow-volume loops (TBFVL) and exhaled nitric oxide (eNO) measurements were obtained from 100 regular breaths. We aimed for three acceptable measurements for multiple-breath washout and 5-10 acceptable interruption resistance (R(int)) measurements. Acceptable measurements were obtained in ≤ 285 infants with high variability. Mean values were 7.48 mL·kg⁻¹ (95% limits of agreement 4.95-10.0 mL·kg⁻¹) for tidal volume, 14.3 ppb (2.6-26.1 ppb) for eNO, 23.9 mL·kg⁻¹ (16.0-31.8 mL·kg⁻¹) for functional residual capacity, 6.75 (5.63-7.87) for lung clearance index and 3.78 kPa·s·L⁻¹ (1.14-6.42 kPa·s·L⁻¹) for R(int). In males, TBFVL outcomes were associated with anthropometric parameters and in females, with maternal smoking during pregnancy, maternal asthma and Caesarean section. This large normative data set in unsedated infants offers reference values for future research and particularly for studies where sedation may put infants at risk. Furthermore, it highlights the impact of maternal and environmental risk factors on neonatal lung function.
Resumo:
Surveys from the USA, Australia and Spain have shown significant inter-institutional variation in delivery room (DR) management of very low birth weight infants (VLBWI, <1500g) at birth, despite regularly updated international guidelines.
Resumo:
Infants with chronic lung disease (CLD) have a capacity to maintain functional lung volume despite alterations to their lung mechanics. We hypothesize that they achieve this by altering breathing patterns and dynamic elevation of lung volume, leading to differences in the relationship between respiratory muscle activity, flow and lung volume. Lung function and transcutaneous electromyography of the respiratory muscles (rEMG) were measured in 20 infants with CLD and in 39 healthy age-matched controls during quiet sleep. We compared coefficient of variations (CVs) of rEMG and the temporal relationship of rEMG variables, to flow and lung volume [functional residual capacity (FRC)] between these groups. The time between the start of inspiratory muscle activity and the resulting flow (tria)--in relation to respiratory cycle time--was significantly longer in infants with CLD. Although FRC had similar associations with tria and postinspiratory activity (corrected for respiratory cycle time), the CV of the diaphragmatic rEMG was lower in CLD infants (22.6 versus 31.0%, p = 0.030). The temporal relationship of rEMG to flow and FRC and the loss of adaptive variability provide additional information on coping mechanisms in infants with CLD. This technique could be used for noninvasive bedside monitoring of CLD.
Resumo:
Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.
Resumo:
The temporal bone is ideal for low-dose CT because of its intrinsic high contrast. The aim of this study was to retrospectively evaluate image quality and radiation doses of a new low-dose versus a standard high-dose pediatric temporal bone CT protocol and to review dosimetric data from the literature.
Resumo:
Diaphragmatic electrical activity (EA(di)), reflecting respiratory drive, and its feedback control might be impaired in critical illness-associated polyneuromyopathy (CIPM). We aimed to evaluate whether titration and prolonged application of neurally adjusted ventilatory assist (NAVA), which delivers pressure (P (aw)) in proportion to EA(di), is feasible in CIPM patients.
Resumo:
The influence of positioning and geometry of ventricular cannulas for contemporary continuous flow Left Ventricular Assist Devices (LVADs) was evaluated in a non-beating isolated heart preparation with borescopic visualization. Preload and LVAD flow were varied to evaluate degrees of ventricular decompression up to the point of ventricular collapse. The performance of a flanged cannula was compared to a conventional bevel-tipped cannula: quantitatively by the maximal flow attainable, and qualitatively by visualization of fluid tracer particles within the ventricular chamber. Three forms of ventricular suck-down occurred: concentric collapse, gradual entrainment and instantaneous entrainment. In some circumstances, unstable oscillations of the ventricle were observed prior to complete collapse. Under conditions of low preload, the flanged cannula demonstrated less positional sensitivity, provided greater flow, and exhibited fewer areas of stagnation than the beveled cannula. These observations warrant further consideration of a flanged ventricular cannula to mitigate complications encountered with conventional cannulae.