56 resultados para Ctl Epitopes
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
Hepatitis C virus (HCV) vaccine efficacy may crucially depend on immunogen length and coverage of viral sequence diversity. However, covering a considerable proportion of the circulating viral sequence variants would likely require long immunogens, which for the conserved portions of the viral genome, would contain unnecessarily redundant sequence information. In this study, we present the design and in vitro performance analysis of a novel "epitome" approach that compresses frequent immune targets of the cellular immune response against HCV into a shorter immunogen sequence. Compression of immunological information is achieved by partial overlapping shared sequence motifs between individual epitopes. At the same time, sequence diversity coverage is provided by taking advantage of emerging cross-reactivity patterns among epitope variants so that epitope variants associated with the broadest variant cross-recognition are preferentially included. The processing and presentation analysis of specific epitopes included in such a compressed, in vitro-expressed HCV epitome indicated effective processing of a majority of tested epitopes, although re-presentation of some epitopes may require refined sequence design. Together, the present study establishes the epitome approach as a potential powerful tool for vaccine immunogen design, especially suitable for the induction of cellular immune responses against highly variable pathogens.
Resumo:
Hepatitis C virus (HCV) clearance has been associated with reduced viral evolution in targeted cytotoxic T-lymphocyte (CTL) epitopes, suggesting that HCV clearers may mount CTL responses with a superior ability to recognize epitope variants and prevent viral immune escape. Here, 40 HCV-infected subjects were tested with 406 10-mer peptides covering the vast majority of the sequence diversity spanning a 197-residue region of the NS3 protein. HCV clearers mounted significantly broader CTL responses of higher functional avidity and with wider variant cross-recognition capacity than nonclearers. These observations have important implications for vaccine approaches that may need to induce high-avidity responses in vivo.
Resumo:
CTL are induced by two pathways, i.e. direct priming, where tumor cells present tumor antigens to naïve specific CTL, and cross-priming, where professional APC cross-present captured tumor antigens to CTL. Here, we examined direct priming versus cross-priming after immunizing (H-2(b) x H-2(d)) F1 mice with either H-2(b) or H-2(d) positive tumor cells transfected with the GP or nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV). Cross-priming was observed for the immunodominant epitopes LCMV-gp33 and -np118, although direct induction resulted in higher CTL frequencies. In contrast, CTL specific for the subdominant epitopes LCMV-gp283 or -np396 were induced only if epitopes were presented directly on MHC class I molecules of the immunizing cell. The broader repertoire and the higher CTL frequencies induced after vaccination with haplotype-matched tumor cells resulted in more efficient anti-tumor and antiviral protection. Firstly, our results indicate that certain virus and tumor antigens may not be detected by CD8(+) T cells because of impaired cross-priming. Secondly, efficient cross-priming contributes to the immunodominant nature of a tumor-specific CTL epitope. Thirdly, vaccine strategies using autologous or syngenic antigen-expressing cells induce a broader repertoire of tumor-specific CTL and higher CTL frequencies.
Resumo:
In this report, we describe a short peptide, containing a T helper- and a B-cell epitope, located in the Gag protein of the caprine arthritis encephalitis virus (CAEV). This T-cell epitope is capable of inducing a robust T-cell proliferative response in vaccinated goats with different genetic backgrounds and to provide help for a strong antibody response to the B-cell epitope, indicating that it may function as a universal antigen-carrier for goat vaccines. The primary immune response of goats homozygous for MHC class I and II genes showed an MHC-dependent partitioning in rapid-high and slow-low responses, whereas the memory immune response was strong in both groups, demonstrating that a vaccine based on this immunodominant T helper epitope is capable to overcome genetic differences.
Resumo:
The effect of cancer immunotherapy on the endogenous immune response against tumors is largely unknown. Therefore, we studied immune responses against murine tumors expressing the glycoprotein (GP) and/or nucleoprotein of lymphocytic choriomeningitis virus (LCMV) with or without adoptive T-cell therapy. In nontreated animals, CTLs specific for different epitopes as well as LCMV-GP-specific antibodies contributed to tumor surveillance. Adoptive immunotherapy with monoclonal CTLs specific for LCMV-gp33 impaired the endogenous tumor-specific antibody and CTL response by targeting antigen cross-presenting cells. As a consequence and in contrast to expectations, immunotherapy enhanced tumor growth. Thus, for certain immunogenic tumors, a reduction of tumor-specific B- and T-cell responses and enhanced tumor growth may be an unwanted consequence of adoptive immunotherapy.
Resumo:
Cell death induction by apoptosis is an important process in the maintenance of tissue homeostasis as well as tissue destruction during various pathological processes. Consequently, detection of apoptotic cells in situ represents an important technique to assess the extent and impact of cell death in the respective tissue. While scoring of apoptosis by histological assessment of apoptotic cells is still a widely used method, it is likely biased by sensitivity problems and observed-based variations. The availability of caspase-mediated neo-epitope-specific antibodies offers new tools for the detection of apoptosis in situ. Here, we discuss the use of immunohistochemical detection of cleaved caspase 3 and lamin A for the assessment of apoptotic cells in paraffin-embedded liver tissue. Furthermore, we evaluate the effect of tissue pretreatment and antigen retrieval on the sensitivity of apoptosis detection, background staining and maintenance of tissue morphology.
Resumo:
Short synthetic peptides are important tools in biomedical research permitting to generate hapten specific polyclonal sera for analytical purposes or functional studies. In this paper we provide proof of principle that a peptide located in a highly conserved portion of the Gag protein of the caprine arthritis encephalitis virus and carrying an immunodominant T helper cell epitope functions as an efficient carrier peptide, mediating a strong antibody response to a peptidic hapten encompassing a well-characterized B cell epitope of Env. The carrier and hapten peptides were collinearly synthesized permutating their molecular arrangement. While the antibody response to the hapten was similar for both constructs, the antibody response to a B cell epitope overlapping the T helper cell epitope of the Gag carrier peptide was considerably different. This permits a modular use of the carrier peptide to generate antibody directed exclusively to the hapten peptide or a strong humoral response to both carrier- and hapten-peptide. Finally, we have mapped the epitopes involved in this polarized antibody response and discussed the potential immunological implications.
Resumo:
Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1 protein into a recombinant vaccine.
Resumo:
The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.
Resumo:
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease of hematopoietic stem cells. The disease progresses after several years from an initial chronic phase to a blast phase. Leukemia-specific T cells are regularly detected in CML patients and may be involved in the immunological control of the disease. Here, we analyzed the role of leukemia-specific CD8(+) T cells in CML disease control and the mechanism that maintains CD8(+) T-cell immunosurveillance in a retroviral-induced murine CML model. To study antigen-specific immune responses, the glycoprotein of the lymphocytic choriomeningitis virus was used as model leukemia antigen. Leukemia-specific CTL activity was detectable in vivo in CML mice and depletion of CD8(+) T cells rapidly led to disease progression. CML-specific CTL were characterized by the expression of the IL-7 receptor -chain. In addition, leukemia cells produced IL-7 that was crucial for the maintenance of leukemia-specific CTL and for disease control. Therefore, CML cells maintain the specific CD8(+) T-cell-mediated immune control by IL-7 secretion. This results in prolonged control of disease and probably contributes to the characteristic chronic phase of the disease.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8(+) T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer.
Resumo:
In allergic diseases such as asthma, eosinophils, basophils and mast cells, through release of preformed and newly generated mediators, granule proteins and cytokines, are recognized as key effector cells. While their surface protein phenotypes, mediator release profiles, ontogeny, cell trafficking and genomes have been generally explored and compared, there has yet to be any thorough analysis and comparison of their glycomes. Such studies are critical to understand the contribution of carbohydrates to the induction and regulation of allergic inflammatory responses and are now possible using improved technologies for detecting and characterizing cell-derived glycans. We thus report here the application of high-sensitivity mass spectrometric-based glycomics methodologies to the analysis of N-linked glycans derived from isolated populations of human mast cells, eosinophils and basophils. The samples were subjected to matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) screening analyses and MALDI-TOF/TOF sequencing studies. Results reveal substantive quantities of terminal N-acetylglucosamine containing structures in both the eosinophil and the basophil samples, whereas mast cells display greater relative quantities of sialylated terminal epitopes. For the first time, we characterize the cell surface glycan structures of principal allergic effector cells, which by interaction with glycan-binding proteins (e.g. lectins) have the possibility to dictate cellular functions, and might thus have important implications for the pathogenesis of inflammatory and allergic diseases.
Resumo:
BACKGROUND AND AIMS: Naturally occurring anti-idiotypic antibodies structurally mimic the original antibody epitope. Anti-idiotypes, therefore, are interesting tools for the portrayal of conformational B-cell epitopes of allergens. In this study we used this strategy particularly for major timothy grass pollen (Phleum pratense) allergen Phl p 1. METHODS AND RESULTS: We used a combinatorial phage display library constructed from the peripheral IgG repertoire of a grass pollen allergic patient which was supposed to contain anti-idiotypic Fab specificities. Using purified anti-Phl p 1 IgG for biopanning, several Fab displaying phage clones could be isolated. 100 amplified colonies were screened for their binding capacity to anti-Phl p 1-specific antibodies, finally resulting in four distinct Fab clones according to sequence analysis. Interestingly, heavy chains of all clones derived from the same germ line sequence and showed high homology in their CDRs. Projecting their sequence information on the surface of the natural allergen Phl p 1 (PDB ID: 1N10) indicated matches on the N-terminal domain of the homo-dimeric allergen, including the bridging region between the two monomers. The resulting epitope patches were formed by spatially distant sections of the primary allergen sequence. CONCLUSION: In this study we report that anti-idiotypic specificities towards anti-Phl p 1 IgG, selected from a Fab library of a grass pollen allergic patient, mimic a conformational epitope patch being distinct from a previously reported IgE epitope area.
Resumo:
Bullous pemphigoid (BP), the most common autoimmune subepidermal bullous disease, is associated with an autoantibody response to BP180 and BP230, two components of junctional adhesion complexes in human skin promoting dermo-epidermal cohesion. Retrospective analyses demonstrated that these autoantigens harbor several epitopes targeted by autoaggressive B and T cells. The aim of this prospective multicenter study was to assess the evolution of IgG autoantibodies in 35 BP patients over a 12-month observation period. Epitope-spreading (ES) events were detected in 17 of 35 BP patients (49%). They preferentially occurred in an early stage of the disease and were significantly related to disease severity at diagnosis. Moreover, in three patients, spreading of IgG reactivity to intracellular epitopes of BP180 and BP230 was preceded by recognition of the BP180 ectodomain. Finally, IgG reactivity with extracellular epitopes of BP180 and intracellular epitopes of BP230 correlated with the severity of BP in disease course. These findings support the idea that IgG recognition of the BP180 ectodomain is an early and crucial event in BP disease, followed by variable intra- and intermolecular ES events, which likely shape the individual course of BP.