31 resultados para Blended e-learning system
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
Event-related potentials (ERPs) were used to trace changes in brain activity related to progress in second language learning. Twelve English-speaking exchange students learning German in Switzerland were recruited. ERPs to visually presented single words from the subjects' native language (English), second language (German) and an unknown language (Romansh) were measured before (day 1) and after (day 2) 5 months of intense German language learning. When comparing ERPs to German words from day 1 and day 2, we found topographic differences between 396 and 540 ms. These differences could be interpreted as a latency shift indicating faster processing of German words on day 2. Source analysis indicated that the topographic differences were accounted for by shorter activation of left inferior frontal gyrus (IFG) on day 2. In ERPs to English words, we found Global Field Power differences between 472 and 644 ms. This may due to memory traces related to English words being less easily activated on day 2. Alternatively, it might reflect the fact that--with German words becoming familiar on day 2--English words loose their oddball character and thus produce a weaker P300-like effect on day 2. In ERPs to Romansh words, no differences were observed. Our results reflect plasticity in the neuronal networks underlying second language acquisition. They indicate that with a higher level of second language proficiency, second language word processing is faster and requires shorter frontal activation. Thus, our results suggest that the reduced IFG activation found in previous fMRI studies might not reflect a generally lower activation but rather a shorter duration of activity.
Resumo:
Blended Learning-Angebote - Lehrveranstaltungen, die aus Präsenzanteilen und virtuellen Anteilen im Internet bestehen - halten zunehmend Einzug an Universitäten, Fachhochschulen und Pädagogischen Hochschulen. Diese neuen Lehrformen stehen im Spannungsfeld zwischen technischen Möglichkeiten, ökonomischen Erfordernissen und hochschuldidaktischen Anforderungen. Den Mittelpunkt des Buches bildet das computerunterstützte Lehrangebot des «Virtuellen Campus Erziehungswissenschaft» an der Universität Bern, das der Ausbildung zukünftiger Lehrpersonen an der Pädagogischen Hochschule Bern dient. Zum einen soll dieses in der Praxis bewährte Lehrangebot theoretisch analysiert werden. Zum anderen erfolgt ein Einblick in die Praxis des «Virtuellen Campus Erziehungswissenschaft», um anderen Bildungsinstitutionen Anregungen zur Einrichtung ähnlicher Angebote oder zur Modifizierung ihrer Blended-Learning-Kurse zu geben. Dabei werden die Bereiche (a) Planung und Entwicklung von Lehrangeboten, (b) Methoden der Vermittlung und Einsatz neuer Technologien, (c) Betreuung von Studierenden, (d) Assessment der Studierenden, (e) Qualitätssicherung der Lehre und der eigenen Lehrtätigkeit und (f) Selbstmanagement und Professionalität im Hochschulkontext abgedeckt. Schliesslich wird auch nach der hochschuldidaktischen Vernunft solcher Angebote gefragt.
Resumo:
BACKGROUND Currently only a few reports exist on how to prepare medical students for skills laboratory training. We investigated how students and tutors perceive a blended learning approach using virtual patients (VPs) as preparation for skills training. METHODS Fifth-year medical students (N=617) were invited to voluntarily participate in a paediatric skills laboratory with four specially designed VPs as preparation. The cases focused on procedures in the laboratory using interactive questions, static and interactive images, and video clips. All students were asked to assess the VP design. After participating in the skills laboratory 310 of the 617 students were additionally asked to assess the blended learning approach through established questionnaires. Tutors' perceptions (N=9) were assessed by semi-structured interviews. RESULTS From the 617 students 1,459 VP design questionnaires were returned (59.1%). Of the 310 students 213 chose to participate in the skills laboratory; 179 blended learning questionnaires were returned (84.0%). Students provided high overall acceptance ratings of the VP design and blended learning approach. By using VPs as preparation, skills laboratory time was felt to be used more effectively. Tutors perceived students as being well prepared for the skills laboratory with efficient uses of time. CONCLUSION The overall acceptance of the blended learning approach was high among students and tutors. VPs proved to be a convenient cognitive preparation tool for skills training.
Resumo:
BACKGROUND E-learning and blended learning approaches gain more and more popularity in emergency medicine curricula. So far, little data is available on the impact of such approaches on procedural learning and skill acquisition and their comparison with traditional approaches. OBJECTIVE This study investigated the impact of a blended learning approach, including Web-based virtual patients (VPs) and standard pediatric basic life support (PBLS) training, on procedural knowledge, objective performance, and self-assessment. METHODS A total of 57 medical students were randomly assigned to an intervention group (n=30) and a control group (n=27). Both groups received paper handouts in preparation of simulation-based PBLS training. The intervention group additionally completed two Web-based VPs with embedded video clips. Measurements were taken at randomization (t0), after the preparation period (t1), and after hands-on training (t2). Clinical decision-making skills and procedural knowledge were assessed at t0 and t1. PBLS performance was scored regarding adherence to the correct algorithm, conformance to temporal demands, and the quality of procedural steps at t1 and t2. Participants' self-assessments were recorded in all three measurements. RESULTS Procedural knowledge of the intervention group was significantly superior to that of the control group at t1. At t2, the intervention group showed significantly better adherence to the algorithm and temporal demands, and better procedural quality of PBLS in objective measures than did the control group. These aspects differed between the groups even at t1 (after VPs, prior to practical training). Self-assessments differed significantly only at t1 in favor of the intervention group. CONCLUSIONS Training with VPs combined with hands-on training improves PBLS performance as judged by objective measures.
Resumo:
Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.