50 resultados para Axial Dispersion Coefficient
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The occurrence of gaseous pollutants in soils has stimulated many experimental activities, including forced ventilation in the field as well as laboratory transport experiments with gases. The dispersion coefficient in advective-dispersive gas phase transport is often dominated by molecular diffusion, which leads to a large overall dispersivity gamma. Under such conditions it is important to distinguish between flux and resident modes of solute injection and detection. The influence of the inlet type oil the macroscopic injection mode was tested in two series of column experiments with gases at different mean flow velocities nu. First we compared infinite resident and flux injections, and second, semi-infinite resident and flux injections. It is shown that the macroscopically apparent injection condition depends on the geometry of the inlet section. A reduction of the cross-sectional area of the inlet relative to that of the column is very effective in excluding the diffusive solute input, thus allowing us to use the solutions for a flux Injection also at rather low mean flow velocities nu. If the whole cross section of a column is exposed to a large reservoir like that of ambient air, a semi-infinite resident injection is established, which can be distinguished from a flux injection even at relatively high velocities nu, depending on the mechanical dispersivity of the porous medium.
Resumo:
In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (g − 2) μ . We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to (g − 2) μ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.
Resumo:
The aim of this study was to examine the wear behavior of conical crowns of gold alloy and zirconium dioxide ceramics facing electroplated gold copings.
Resumo:
Reactive oxygen species (ROS) production is important in the toxicity of pathogenic particles such as fibres. We examined the oxidative potential of straight (50 microm and 10 microm) and tangled carbon nanotubes in a cell free assay, in vitro and in vivo using different dispersants. The cell free oxidative potential of tangled nanotubes was higher than for the straight fibres. In cultured macrophages tangled tubes exhibited significantly more ROS at 30 min, while straight tubes increased ROS at 4 h. ROS was significantly higher in bronchoalveolar lavage cells of animals instilled with tangled and 10 mum straight fibres, whereas the number of neutrophils increased only in animals treated with the long tubes. Addition of dispersants in the suspension media lead to enhanced ROS detection by entangled tubes in the cell-free system. Tangled fibres generated more ROS in a cell-free system and in cultured cells, while straight fibres generated a slower but more prolonged effect in animals.
Resumo:
Chlamydia trachomatis is the most common bacterial sexually transmitted infection (STI) in many developed countries. The highest prevalence rates are found among young adults who have frequent partner change rates. Three published individual-based models have incorporated a detailed description of age-specific sexual behaviour in order to quantify the transmission of C. trachomatis in the population and to assess the impact of screening interventions. Owing to varying assumptions about sexual partnership formation and dissolution and the great uncertainty about critical parameters, such models show conflicting results about the impact of preventive interventions. Here, we perform a detailed evaluation of these models by comparing the partnership formation and dissolution dynamics with data from Natsal 2000, a population-based probability sample survey of sexual attitudes and lifestyles in Britain. The data also allow us to describe the dispersion of C. trachomatis infections as a function of sexual behaviour, using the Gini coefficient. We suggest that the Gini coefficient is a useful measure for calibrating infectious disease models that include risk structure and highlight the need to estimate this measure for other STIs.
Resumo:
To demonstrate the potential benefits of biochemical axial T2 mapping of intervertebral discs (IVDs) regarding the detection and grading of early stages of degenerative disc disease using 1.5-Tesla magnetic resonance imaging (MRI) in a clinical setting.
Resumo:
Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.
Resumo:
OBJECTIVES: To test whether dynamic contour tonometry yields ocular pulse amplitude (OPA) measurements that are independent of corneal thickness and curvature, and to assess variables of observer agreement. METHODS: In a multivariate cluster analysis on 223 eyes, the relationship between central corneal thickness, corneal curvature, axial length, anterior chamber depth, intraocular pressure, sex, age, and OPA measurements was assessed. Intraobserver and interobserver variabilities were calculated from repeated measurements obtained from 8 volunteers by 4 observers. RESULTS: The OPA readings were not affected by central corneal thickness (P = .08), corneal curvature (P = .47), anterior chamber depth (P = .80), age (P = .60), or sex (P = .73). There was a positive correlation between OPA and intraocular pressure (0.12 mm Hg/1 mm Hg of intraocular pressure; P<.001) and a negative correlation between OPA and axial length (0.27 mm Hg/1 mm of length; P<.001). Intraobserver and interobserver variabilities were 0.08 and 0.02 mm Hg, respectively, and the intraclass correlation coefficient was 0.89. CONCLUSIONS: The OPA readings obtained with dynamic contour tonometry in healthy subjects are not influenced by the structure of the anterior segment of the eye but are affected by intraocular pressure and axial length. We found a high amount of agreement within and between observers.