10 resultados para 770405 Physical and chemical conditions
em BORIS: Bern Open Repository and Information System - Berna - Sui
Resumo:
The aim of this paper is to provide a review of general processes related to plasma sources, their transport, energization, and losses in the planetary magnetospheres. We provide background information as well as the most up-to-date knowledge of the comparative studies of planetary magnetospheres, with a focus on the plasma supply to each region of the magnetospheres. This review also includes the basic equations and modeling methods commonly used to simulate the plasma sources of the planetary magnetospheres. In this paper, we will describe basic and common processes related to plasma supply to each region of the planetary magnetospheres in our solar system. First, we will describe source processes in Sect. 1. Then the transport and energization processes to supply those source plasmas to various regions of the magnetosphere are described in Sect. 2. Loss processes are also important to understand the plasma population in the magnetosphere and Sect. 3 is dedicated to the explanation of the loss processes. In Sect. 4, we also briefly summarize the basic equations and modeling methods with a focus on plasma supply processes for planetary magnetospheres.
Resumo:
Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.
Resumo:
Comets are thought to be the most pristine bodies present in the Solar System. In consequence of spending the majority of their existence beyond 30 AU, their composition can give insights on the physical and chemical conditions during their formation. Since August 2014 the European Space Agency spacecraft Rosetta accompanies the Jupiter family comet 67P/Churyumov-Gerasimenko on its way to perihelion and beyond. In this study the isotope fractionation of 34S are reported in H2S, OCS, SO2, S2, and CS2 at 67P. In addition for the first time the isotope fractionation for 33S is presented for cometary volatiles. The ratio 32S/33S is given for H2S, SO2 and a tentative value is given for CS2. With a mean value of -50 ± 22‰ and -306 ± 31‰ for δ34S and δ33S respectively, H2S shows a significant depletion in both 34S and 33S. For SO2 the depletion is less distinct with δ34S and δ33S being -67 ± 40‰ and -130 ± 53‰, respectively. The strongest depletion is present for CS2 with -114 ± 21‰and -276 ± 55‰, respectively. For OCS and S2 only δ34S could be determined which is -252 ± 77‰ and -357 ± 145‰, respectively. A comparison with sulfur isotopic ratios measured in SiC grains revealed that both SiC grains and the five volatile species have similar sulfur isotopic ratios. However, it is beyond the scope of this work to investigate the possibility of a link between SiC grains and cometary ices. Nevertheless, mass-dependent or mass-independent fractionation due to photo dissociation can be ruled out as sole cause of the seen depletion of 33S and 34S. Furthermore, an upper limit of (9.64 ± 0.19)·10.4 for D/H in HDS has been determined. This value is about a factor two higher than D/H in H2O for the same comet reported by (Altwegg et al., 2015). Besides the investigation concerning isotopic ratios of sulfur bearing species in this work the calibration and characterization of ROSINA/DFMS has been continued. Here it is reported about the deviation of the mass scale for MCP/LEDA low resolution spectra and the calibration measurements performed in the laboratory. Furthermore the outcome of the attempt to describe the sensitivity of DFMS with an empirical function will be discussed. The last part of the characterization of DFMS is dedicated to determine the so-called individual pixel gain for the laboratory and the flight model. Moreover, correlation between the depletion’s manifestation of the MCP with respect to the applied voltages has been investigated for both models. It has been found that further measurements are needed to understand the manifestation of depletion at the laboratory model. For the model on board of Rosetta it could be shown that most of the present feature are due to the usage of the MCP and suggestions have been made in order to answer the remaining question considering the depletion of the MCP.
Resumo:
Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, N-14/N-15, O-16/O-18, C-12/C-13, and S-32/S-34 ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.
Resumo:
Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed.
Resumo:
The 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states with very high certainty that anthropogenic emissions have caused measurable changes in the physical ocean environment. These changes are summarized with special focus on those that are predicted to have the strongest, most direct effects on ocean biological processes; namely, ocean warming and associated phenomena (including stratification and sea level rise) as well as deoxygenation and ocean acidification. The biological effects of these changes are then discussed for microbes (including phytoplankton), plants, animals, warm and cold-water corals, and ecosystems. The IPCC AR5 highlighted several areas related to both the physical and biological processes that required further research. As a rapidly developing field, there have been many pertinent studies published since the cut off dates for the AR5, which have increased our understanding of the processes at work. This study undertook an extensive review of recently published literature to update the findings of the AR5 and provide a synthesized review on the main issues facing future oceans. The level of detail provided in the AR5 and subsequent work provided a basis for constructing projections of the state of ocean ecosystems in 2100 under two the Representative Concentration Pathways RCP4.5 and 8.5. Finally the review highlights notable additions, clarifications and points of departure from AR5 provided by subsequent studies.
Resumo:
Ultraviolet-ozone treatment is used as a standard surface cleaning procedure for removal of molecular organic contamination from analytical and sensing devices. Here, it is applied for injection-molded polymer microcantilevers before characterization and sensing experiments. This article examines the effects of the surface cleaning process using commercial equipment, in particular on the performance and mechanical properties of the cantilevers. It can be shown that the first chemical aging process essentially consist of the cross linking of the polymer chains together with a physical aging of the material. For longer exposure, the expected thermo-oxidative formation of carbonyl groups sets in and an exposure dependent chemical degradation can be detected. A process time of 20 min was found suitable as a trade-off between cleaning and stability
Resumo:
The surface of Mars is host to many regions displaying polygonal crack patterns that have been identified as potential desiccation cracks. These regions are mostly within Noachian-aged terrains and are closely associated with phyllosilicate occurrences and smectites in particular. We have built a laboratory setup that allows us to carry out desiccation experiments on Mars-analog materials in an effort to constrain the physical and chemical properties of sediments that display polygonal cracks. The setup is complemented by a pre-existing simulation chamber that enables the investigation of the spectral and photometric properties of analog materials in Mars-like conditions. The initial experiments that have been carried out show that (1) crack patterns are visible in smectite-bearing materials in varying concentrations down to similar to 10% smectite by weight, (2) chlorides, and potentially other salts, delay the onset of cracking and may even block it from occurring entirely, and (3) the polygonal patterns, while being indicative of the presence of phyllosilicates, cannot be used to differentiate between various phyllosilicate-bearing deposits. However, their size-scale and morphology yields important information regarding their thickness and the hydrological conditions at the time of formation. Furthermore, the complementary spectral measurements for some of the analog samples shows that crack patterns may develop in materials with such low concentrations of smectites that would not be expected to be identified using remote-sensing instruments. This may explain the presence of polygonal patterns on Mars in sediments that lack spectral confirmation of phyllosilicates. (C) 2015 Elsevier Ltd. All rights reserved.