13 resultados para zero energy buildings
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition — at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent ηc is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
Diffusion Dynamics of Energy Efficient Buildings. Actor's Cognitive Maps of the Construction Process
Resumo:
An experiment was conducted to determine the effect of grazing versus zero-grazing on energy expenditure (EE), feeding behaviour and physical activity in dairy cows at different stages of lactation. Fourteen Holstein cows were subjected to two treatments in a repeated crossover design with three experimental series (S1, S2, and S3) reflecting increased days in milk (DIM). At the beginning of each series, cows were on average at 38, 94 and 171 (standard deviation (SD) 10.8) DIM, respectively. Each series consisted of two periods containing a 7-d adaptation and a 7-d collection period each. Cows either grazed on pasture for 16–18.5 h per day or were kept in a freestall barn and had ad libitum access to herbage harvested from the same paddock. Herbage intake was estimated using the double alkane technique. On each day of the collection period, EE of one cow in the barn and of one cow on pasture was determined for 6 h by using the 13C bicarbonate dilution technique, with blood sample collection done either manually in the barn or using an automatic sampling system on pasture. Furthermore, during each collection period physical activity and feeding behaviour of cows were recorded over 3 d using pedometers and behaviour recorders. Milk yield decreased with increasing DIM (P<0.001) but was similar with both treatments. Herbage intake was lower (P<0.01) for grazing cows (16.8 kg dry matter (DM)/d) compared to zero-grazing cows (18.9 kg DM/d). The lowest (P<0.001) intake was observed in S1 and similar intakes were observed in S2 and S3. Within the 6-h measurement period, grazing cows expended 19% more (P<0.001) energy (319 versus 269 kJ/kg metabolic body size (BW0.75)) than zero-grazing cows and differences in EE did not change with increasing DIM. Grazing cows spent proportionally more (P<0.001) time walking and less time standing (P<0.001) and lying (P<0.05) than zero-grazing cows. The proportion of time spent eating was greater (P<0.001) and that of time spent ruminating was lower (P<0.05) for grazing cows compared to zero-grazing cows. In conclusion, lower feed intake along with the unchanged milk production indicates that grazing cows mobilized body reserves to cover additional energy requirements which were at least partly caused by more physical activity. However, changes in cows׳ behaviour between the considered time points during lactation were too small so that differences in EE remained similar between treatments with increasing DIM.
Resumo:
The vector channel spectral function and the dilepton production rate from a QCD plasma at a temperature above a few hundred MeV are evaluated up to next-to-leading order (NLO) including their dependence on a non-zero momentum with respect to the heat bath. The invariant mass of the virtual photon is taken to be in the range K2 ~ (πT)2 ~ (1GeV)2, generalizing previous NLO results valid for K2 ≫ (πT)2. In the opposite regime 0 < K2 ≪ (πT)2 the loop expansion breaks down, but agrees nevertheless in order of magnitude with a previous result obtained through resummations. Ways to test the vector spectral function through comparisons with imaginary-time correlators measured on the lattice are discussed.
Resumo:
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.
Resumo:
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f+(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio fK / fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant αs.
Resumo:
Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.
Resumo:
Resonant fluorescence line narrowing of the R1 line of the [Cr(ox)3]3− chromophore in [Rh(bpy)3][NaCr(ox)3]ClO4 at 1.6 K neither gives rise to the usual three-line pattern nor to spectral diffusion. Instead multi-line spectra with spacings equal to the zero-field splitting of the ground state are observed. This phenomenon is attributed to efficient non-radiative resonant energy transfer within the R1 line.