40 resultados para yolk pigmentation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The gene for agouti signaling protein (ASIP) is centrally involved in the expression of coat color traits in animals. The Mangalitza pig breed is characterized by a black-and-tan phenotype with black dorsal pigmentation and yellow or white ventral pigmentation. We investigated a Mangalitza x Piétrain cross and observed a coat color segregation pattern in the F2 generation that can be explained by virtue of two alleles at the MC1R locus and two alleles at the ASIP locus. Complete linkage of the black-and-tan phenotype to microsatellite alleles at the ASIP locus on SSC 17q21 was observed. Corroborated by the knowledge of similar mouse coat color mutants, it seems therefore conceivable that the black-and-tan pigmentation of Mangalitza pigs is caused by an ASIP allele a(t), which is recessive to the wild-type allele A. Toward positional cloning of the a(t) mutation, a 200-kb genomic BAC/PAC contig of this chromosomal region has been constructed and subsequently sequenced. Full-length ASIP cDNAs obtained by RACE differed in their 5' untranslated regions, whereas they shared a common open reading frame. Comparative sequencing of all ASIP exons and ASIP cDNAs between Mangalitza and Piétrain pigs did not reveal any differences associated with the coat color phenotype. Relative qRT-PCR analyses showed different dorsoventral skin expression intensities of the five ASIP transcripts in black-and-tan Mangalitza. The a(t) mutation is therefore probably a regulatory ASIP mutation that alters its dorsoventral expression pattern.
Resumo:
Most published genomewide association studies (GWAS) in sheep have investigated recessively inherited monogenic traits. The objective here was to assess the feasibility of performing GWAS for a dominant trait for which the genetic basis was already known. A total of 42 Manchega and Rasa Aragonesa sheep that segregate solid black or white coat pigmentation were genotyped using the SNP50 BeadChip. Previous analysis in Manchegas demonstrated a complete association between the pigmentation trait and alleles of the MC1R gene, setting an a priori expectation for GWAS. Multiple methods were used to identify and quantify the strength of population substructure between black and white animals, before allelic association testing was performed for 49 034 SNPs. Following correction for substructure, GWAS identified the most strongly associated SNP (s26449) was also the closest to the MC1R gene. The finding was strongly supported by the permutation tree-based random forest (RF) analysis. Importantly, GWAS identified unlinked SNP with only slightly lower p-values than for s26449. Random forest analysis indicated these were false positives, suggesting interpretation based on both approaches was beneficial. The results indicate that a combined analytical approach can be successful in studies where a modest number of animals are available and substantial population stratification exists.
Resumo:
Mutations in MITF lead to a large variety of phenotypes in human, mice and other species. They mostly affect pigmentation and hearing, whereas in mice, they may additionally cause microphthalmia and osteopetrosis. In this study, we report a single case of a Holstein calf with lack of pigmentation and microphthalmia born to healthy parents. Mendelian analysis of high-density SNP genotypes reveals a large number of parentage errors showing missing paternal alleles in the offspring, indicating a deletion encompassing 19 Mb on BTA 22. The genomic deletion affects the paternal allele and includes MITF and 131 other annotated genes. As the calf shows only one copy of the BTA 22 segment, the observed phenotype is probably caused by haploinsufficiency of the genes in that genomic region. Both the observed lack of skin pigmentation and reduced eye size can most likely be explained by a lack of MITF function.
Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss of pigmentation
Resumo:
The South African Boer goat displays a characteristic white spotting phenotype, in which the pigment is limited to the head. Exploiting the existing phenotype variation within the breed, we mapped the locus causing this white spotting phenotype to chromosome 17 by genome wide association. Subsequent whole genome sequencing identified a 1 Mb copy number variant (CNV) harboring 5 genes including EDNRA. The analysis of 358 Boer goats revealed 3 alleles with one, two, and three copies of this CNV. The copy number is correlated with the degree of white spotting in goats. We propose a hypothesis that ectopic overexpression of a mutant EDNRA scavenges EDN3 required for EDNRB signaling and normal melanocyte development and thus likely lead to an absence of melanocytes in the non-pigmented body areas of Boer goats. Our findings demonstrate the value of domestic animals as reservoir of unique mutants and for identifying a precisely defined functional CNV.
Resumo:
In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.
Resumo:
Nail melanoma in children is rarely reported in the literature, and all of the published cases were diagnosed in dark-skinned phototypes or in Asians. We report two cases of in situ nail matrix melanoma presenting as longitudinal melanonychia (LM) in fair-skinned children of Italian origin. Nail plate dermatoscopy revealed a brown background with lines of irregular color, spacing, and thickness in both cases. Histopathology of the excised lesions showed melanoma in situ. Clinical, dermatoscopic, and pathological criteria that permit clear differentiation of benign melanocytic activation or proliferation from nail matrix melanoma are not established for children. The presence of a pigmented band of a single nail in a child usually represents a problem for clinicians, because the clinical and dermatoscopic features that are considered possible indicators of nail unit melanoma in adults are frequently observed in benign melanocytic hyperplasia and nevi in children. There is therefore the need to find parameters useful for clinical and dermatoscopic diagnosis in childhood nail pigmentation and to reach a consensus on management of children with a band of LM.
Resumo:
Funduscopy is one of the most commonly used diagnostic tools in the ophthalmic practice, allowing for a ready assessment of pathological changes in the retinal vasculature and the outer retina. This non-invasive technique has so far been rarely used in animal model for ophthalmic diseases, albeit its potential as a screening assay in genetic screens. The zebrafish (Danio rerio) is well suited for such genetic screens for ocular alterations. Therefore we developed funduscopy in adult zebrafish and employed it as a screening tool to find alterations in the anterior segment and the fundus of the eye of genetically modified adult animals.A stereomicroscope with coaxial reflected light illumination was used to obtain fundus color images of the zebrafish. In order to find lens and retinal alterations, a pilot screen of 299 families of the F3 generation of ENU-treated adult zebrafish was carried out.Images of the fundus of the eye and the anterior segment can be rapidly obtained and be used to identify alterations in genetically modified animals. A number of putative mutants with cataracts, defects in the cornea, eye pigmentation, ocular vessels and retina were identified. This easily implemented method can also be used to obtain fundus images from rodent retinas.In summary, we present funduscopy as a valuable tool to analyse ocular abnormalities in adult zebrafish and other small animal models. A proof of principle screen identified a number of putative mutants, making funduscopy based screens in zebrafish feasible.
Resumo:
The KIT receptor protein-tyrosine kinase plays an important role during embryonic development. Activation of KIT is crucial for the development of various cell lineages such as melanoblasts, stem cells of the haematopoietic system, spermatogonia and intestinal cells of Cajal. In mice, many mutations in the Kit gene cause pigmentation disorders accompanied by pleiotropic effects on blood cells and male fertility. Previous work has demonstrated that dominant white Franches-Montagnes horses carry one copy of the KIT gene with the p.Y717X mutation. The targeted breeding of white horses would be ethically questionable if white horses were known to suffer from anaemia or leukopenia. The present study demonstrates that no statistically significant differences in peripheral blood parameters are detectable between dominant white and solid-coloured Franches-Montagnes horses. The data indicate that KIT mutations may have different effects in mice, pigs, and horses. The KIT p.Y717X mutation does not have a major negative effect on the haematopoietic system of dominant white horses.
Resumo:
Transporters for vitamin C and its oxidized form dehydroascorbic acid (DHA) are crucial to maintain physiological concentrations of this important vitamin that is used in a variety of biochemical processes. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (encoded by the SLC23A1 gene) and SVCT2 (SLC23A2) as well as an orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter (NAT) family, although no nucleobase transport has yet been demonstrated for the human members of this family. The SVCT1 and SVCT2 transporters are rather specific for ascorbic acid, which is an important antioxidant and plays a crucial role in a many metal-containing enzymes. SVCT1 is expressed predominantly in epithelial tissues such as intestine where it contributes to the supply and maintenance of whole-body ascorbic acid levels. In contrast to various other mammals, humans are not capable of synthesizing ascorbic acid from glucose and therefore the uptake of ascorbic acid from the diet via SVCT1 is essential for maintaining appropriate concentrations of vitamin C in the human body. The expression of SVCT2 is relatively widespread, where it serves to either deliver ascorbic acid to tissues with high demand of the vitamin for enzymatic reactions or to protect metabolically highly active cells or specialized tissues from oxidative stress. The murine Slc23a3 gene encoding the orphan transporter SVCT3 was originally cloned from mouse yolk sac, and subsequent studies showed that it is expressed in the kidney. However, the function of SVCT3 has not been reported and it remains speculative as to whether SVCT3 is a nucleobase transporter.
Resumo:
VE-PTP, a receptor-type phosphotyrosine phosphatase, associates with the tyrosine kinase receptor Tie-2 and VE-cadherin and enhances the adhesive function of the latter. Here, VE-PTP was found to be restricted to endothelial cells, with a preference for arterial endothelium. Mutant mice expressing a truncated, secreted form of VE-PTP lacking the cytoplasmic and transmembrane domains and the most membrane-proximal extracellular fibronectin type III repeat, showed severe vascular malformations causing lethality at 10 days of gestation. Although blood vessels were initially formed, the intraembryonic vascular system soon deteriorated. Blood vessels in the yolk sac developed into dramatically enlarged cavities. In explant cultures of mutant allantoides, endothelial cells were found next to vessel structures growing as cell layers. No signs for enhanced endothelial apoptosis or proliferation were observed. Thus, the activity of VE-PTP is not required for the initial formation of blood vessels, yet it is essential for their maintenance and remodeling.
Resumo:
Coat color dilution in several breeds of dog is characterized by a specific pigmentation phenotype and sometimes accompanied by hair loss and recurrent skin inflammation, the so-called color dilution alopecia or black hair follicular dysplasia. Coat color dilution (d) is inherited as a Mendelian autosomal recessive trait. In a previous study, MLPH polymorphisms showed perfect cosegregation with the dilute phenotype within breeds. However, different dilute haplotypes were found in different breeds, and no single polymorphism was identified in the coding sequence that was likely to be causative for the dilute phenotype. We resequenced the 5'-region of the canine MLPH gene and identified a strong candidate single nucleotide polymorphism within the nontranslated exon 1, which showed perfect association to the dilute phenotype in 65 dilute dogs from 7 different breeds. The A/G polymorphism is located at the last nucleotide of exon 1 and the mutant A-allele is predicted to reduce splicing efficiency 8-fold. An MLPH mRNA expression study using quantitative reverse transcriptase-polymerase chain reaction confirmed that dd animals had only about approximately 25% of the MLPH transcript compared with DD animals. These results provide preliminary evidence that the reported regulatory MLPH mutation might represent a causal mutation for coat color dilution in dogs.