26 resultados para workflow variance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Resumo:
The surgical treatment of liver tumours relies on precise localization of the lesions and detailed knowledge of the patient-specific vascular and biliary anatomy. Detailed three-dimensional (3D) anatomical information facilitates complete tumour removal while preserving a sufficient amount of functional liver tissue.
Resumo:
OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.
Resumo:
Cannabinoid receptor 2 (CB(2) receptor) ligands are potential candidates for the therapy of chronic pain, inflammatory disorders, atherosclerosis, and osteoporosis. We describe the development of pharmacophore models for CB(2) receptor ligands, as well as a pharmacophore-based virtual screening workflow, which resulted in 14 hits for experimental follow-up. Seven compounds were identified with K(i) values below 25 microM. The CB(2) receptor-selective pyridine tetrahydrocannabinol analogue 8 (K(i) = 1.78 microM) was identified as a CB(2) partial agonist. Acetamides 12 (K(i) = 1.35 microM) and 18 (K(i) = 2.1 microM) represent new scaffolds for CB(2) receptor-selective antagonists and inverse agonists, respectively. Overall, our pharmacophore-based workflow yielded three novel scaffolds for the chemical development of CB(2) receptor ligands.
Resumo:
Identifying and comparing different steady states is an important task for clinical decision making. Data from unequal sources, comprising diverse patient status information, have to be interpreted. In order to compare results an expressive representation is the key. In this contribution we suggest a criterion to calculate a context-sensitive value based on variance analysis and discuss its advantages and limitations referring to a clinical data example obtained during anesthesia. Different drug plasma target levels of the anesthetic propofol were preset to reach and maintain clinically desirable steady state conditions with target controlled infusion (TCI). At the same time systolic blood pressure was monitored, depth of anesthesia was recorded using the bispectral index (BIS) and propofol plasma concentrations were determined in venous blood samples. The presented analysis of variance (ANOVA) is used to quantify how accurately steady states can be monitored and compared using the three methods of measurement.
Resumo:
Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.
Resumo:
Previous research suggests that the personality of a relationship partner predicts not only the individual’s own satisfaction with the relationship but also the partner’s satisfaction. Based on the actor–partner interdependence model, the present research tested whether actor and partner effects of personality are biased when the same method (e.g., self-report) is used for the assessment of personality and relationship satisfaction and, consequently, shared method variance is not controlled for. Data came from 186 couples, of whom both partners provided self- and partner reports on the Big Five personality traits. Depending on the research design, actor effects were larger than partner effects (when using only self-reports), smaller than partner effects (when using only partner reports), or of about the same size as partner effects (when using self- and partner reports). The findings attest to the importance of controlling for shared method variance in dyadic data analysis.
Resumo:
BACKGROUND AND PURPOSE We report on workflow and process-based performance measures and their effect on clinical outcome in Solitaire FR Thrombectomy for Acute Revascularization (STAR), a multicenter, prospective, single-arm study of Solitaire FR thrombectomy in large vessel anterior circulation stroke patients. METHODS Two hundred two patients were enrolled across 14 centers in Europe, Canada, and Australia. The following time intervals were measured: stroke onset to hospital arrival, hospital arrival to baseline imaging, baseline imaging to groin puncture, groin puncture to first stent deployment, and first stent deployment to reperfusion. Effects of time of day, general anesthesia use, and multimodal imaging on workflow were evaluated. Patient characteristics and workflow processes associated with prolonged interval times and good clinical outcome (90-day modified Rankin score, 0-2) were analyzed. RESULTS Median times were onset of stroke to hospital arrival, 123 minutes (interquartile range, 163 minutes); hospital arrival to thrombolysis in cerebral infarction (TICI) 2b/3 or final digital subtraction angiography, 133 minutes (interquartile range, 99 minutes); and baseline imaging to groin puncture, 86 minutes (interquartile range, 24 minutes). Time from baseline imaging to puncture was prolonged in patients receiving intravenous tissue-type plasminogen activator (32-minute mean delay) and when magnetic resonance-based imaging at baseline was used (18-minute mean delay). Extracranial carotid disease delayed puncture to first stent deployment time on average by 25 minutes. For each 1-hour increase in stroke onset to final digital subtraction angiography (or TICI 2b/3) time, odds of good clinical outcome decreased by 38%. CONCLUSIONS Interval times in the STAR study reflect current intra-arterial therapy for patients with acute ischemic stroke. Improving workflow metrics can further improve clinical outcome. CLINICAL TRIAL REGISTRATION: URL http://www.clinicaltrials.gov. Unique identifier: NCT01327989.