92 resultados para white-matter integrity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations of white matter integrity have been associated with interindividual differences in brain function. Still, little is known about the impact of white matter integrity on quantitative motor behaviour. Diffusion tensor imaging and continuous wrist actigraphy were measured on the same day in 12 individuals. Fractional anisotropy as measure of white matter integrity was correlated with the motor activity level. Positive correlations of fractional anisotropy and activity level were detected in the cingulum and the right superior longitudinal fasciculus underneath the precentral gyrus. Negative correlations were found in the left corticobulbar tract, in the right posterior corpus callosum and in the left superior longitudinal fasciculus. Volitional motor activity was associated with white matter integrity in motor relevant fiber tracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altered structural connectivity is a key finding in schizophrenia, but the meaning of white matter alterations for behavior is rarely studied. In healthy subjects, motor activity correlated with white matter integrity in motor tracts. To explore the relation of motor activity and fractional anisotropy (FA) in schizophrenia, we investigated 19 schizophrenia patients and 24 healthy control subjects using Diffusion Tensor Imaging (DTI) and actigraphy on the same day. Schizophrenia patients had lower activity levels (AL). In both groups linear relations of AL and FA were detected in several brain regions. Schizophrenia patients had lower FA values in prefrontal and left temporal clusters. Furthermore, using a general linear model, we found linear negative associations of FA and AL underneath the right supplemental motor area (SMA), the right precentral gyrus and posterior cingulum in patients. This effect within the SMA was not seen in controls. This association in schizophrenia patients may contribute to the well known dysfunctions of motor control. Thus, structural disconnectivity could lead to disturbed motor behavior in schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altered frontal white matter integrity has been reported in major depression. Still, the behavioral correlates of these alterations are not established. In healthy subjects, motor activity correlated with white matter integrity in the motor system. To explore the relation of white matter integrity and motor activity in major depressive disorder, we investigated 21 medicated patients with major depressive disorder and 21 matched controls using diffusion tensor imaging and wrist actigraphy at the same day. Patients had lower activity levels (AL) compared with controls. Fractional anisotropy (FA) differed between groups in frontal white matter regions and the posterior cingulum. AL was linearly associated with white matter integrity in two clusters within the motor system. Controls had an exclusive positive association of FA and AL in white matter underneath the right dorsal premotor cortex. Only patients had a positive association within the posterior cingulum. Furthermore, patients had negative associations of FA and AL underneath the left primary motor cortex and within the left parahippocampal gyrus white matter. These differences in the associations between structure and behavior may contribute to well-known impaired motor planning or gait disturbances in major depressive disorder. Therefore, signs of psychomotor slowing in major depressive disorder may be linked to changes of the white matter integrity of the motor system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with schizophrenia have reduced execution functions and white matter alterations indicating cerebral disconnectivity. Here we investigated the relationship between white matter integrity and event related potentials (ERP) during a continuous performance test (CPT). Anisotropy values were correlated with the brain electrical P300 microstate duration and P300 latency associated to the NoGo- and the Go-stimuli of the CPT in 11 patients with first episode schizophrenia and 11 matched healthy controls. Both groups showed significant positive correlations of the NoGo-microstate duration with the white matter signal in the superior frontal region, the optic radiation, the posterior cingulate, and the inferolateral fascicle. In addition, patients with first episode schizophrenia had significant correlations with the right radiation and the left genu of the corpus callosum, bilateral geniculate, and the left middle and the superior temporal regions. We interpreted these findings as a sign of functional correlates of extended circuits for the active inhibition of a motor response in the visual CPT as compared to controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The medial forebrain bundle (MFB) is a key structure of the reward system and connects the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), the medial and lateral orbitofrontal cortex (mOFC, lOFC) and the dorsolateral prefrontal cortex (dlPFC). Previous diffusion tensor imaging (DTI) studies in major depressive disorder point to white matter alterations of regions which may be incorporated in the MFB. Therefore, it was the aim of our study to probe white matter integrity of the MFB using a DTI-based probabilistic fibre tracking approach. METHODS 22 patients with major depressive disorder (MDD) (12 melancholic-MDD patients, 10 non-melancholic-MDD patients) and 21 healthy controls underwent DTI scans. We used a bilateral probabilistic fibre tracking approach to extract pathways between the VTA and NACC, mOFC, lOFC, dlPFC respectively. Mean fractional anisotropy (FA) values were used to compare structural connectivity between groups. RESULTS Mean-FA did not differ between healthy controls and all MDD patients. Compared to healthy controls melancholic MDD-patients had reduced mean-FA in right VTA-lOFC and VTA-dlPFC connections. Furthermore, melancholic-MDD patients had lower mean-FA than non-melancholic MDD-patients in the right VTA-lOFC connection. Mean-FA of these pathways correlated negatively with depression scale rating scores. LIMITATIONS Due to the small sample size and heterogeneous age group comparisons between melancholic and non-melancholic MDD-patients should be regarded as preliminary. CONCLUSIONS Our results suggest that the melancholic subtype of MDD is characterized by white matter microstructure alterations of the MFB. White matter microstructure is associated with both depression severity and anhedonia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White matter connects different brain areas and applies electrical insulation to the neuron’s axons with myelin sheaths in order to enable quick signal transmission. Due to its modulatory properties in signal conduction, white matter plays an essential role in learning, cognition and psychiatric disorders (Fields, 2008a). In respect thereof, the non-invasive investigation of white matter anatomy and function in vivo provides the unique opportunity to explore the most complex organ of our body. Thus, the present thesis aimed to apply a multimodal neuroimaging approach to investigate different white matter properties in psychiatric and healthy populations. On the one hand, white matter microstructural properties were investigated in a psychiatric population; on the other hand, white matter metabolic properties were assessed in healthy adults providing basic information about the brain’s wiring entity. As a result, three research papers are presented here. The first paper assessed the microstructural properties of white matter in relation to a frequent epidemiologic finding in schizophrenia. As a result, reduced white matter integrity was observed in patients born in summer and autumn compared to patients born in winter and spring. Despite the large genetic basis of schizophrenia, accumulating evidence indicates that environmental exposures may be implicated in the development of schizophrenia (A. S. Brown, 2011). Notably, epidemiologic studies have shown a 5–8% excess of births during winter and spring for patients with schizophrenia on the Northern Hemisphere at higher latitudes (Torrey, Miller, Rawlings, & Yolken, 1997). Although the underlying mechanisms are unclear, the seasonal birth effect may indicate fluctuating environmental risk factors for schizophrenia. Thus, exposure to harmful factors during foetal development may result in the activation of pathologic neural circuits during adolescence or young adulthood, increasing the risk of schizophrenia (Fatemi & Folsom, 2009). While white matter development starts during the foetal period and continues until adulthood, its major development is accomplished by the age of two years (Brody, Kinney, Kloman, & Gilles, 1987; Huang et al., 2009). This indicates a vulnerability period of white matter that may coincide with the fluctuating environmental risk factors for schizophrenia. Since microstructural alterations of white matter in schizophrenia are frequently observed, the current study provided evidence for the neurodevelopmental hypothesis of schizophrenia. In the second research paper, the perfusion of white matter showed a positive correlation between white matter microstructure and its perfusion with blood across healthy adults. This finding was in line with clinical studies indicating a tight coupling between cerebral perfusion and WM health across subjects (Amann et al., 2012; Chen, Rosas, & Salat, 2013; Kitagawa et al., 2009). Although relatively little is known about the metabolic properties of white matter, different microstructural properties, such as axon diameter and myelination, might be coupled with the metabolic demand of white matter. Furthermore, the ability to detect perfusion signal in white matter was in accordance with a recent study showing that technical improvements, such as pseudo-continuous arterial spin labeling, enabled the reliable detection of white matter perfusion signal (van Osch et al., 2009). The third paper involved a collaboration within the same department to assess the interrelation between functional connectivity networks and their underlying structural connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intergroup bias - the tendency to behave more positively towards an ingroup member than an outgroup member - is a powerful social force, for good and ill. And though it is widely demonstrated, intergroup bias is not universal, as it is characterized by significant individual differences. Recently, attention has begun to turn to whether neuroanatomy might explain these individual differences in intergroup bias. However, no research to date has examined whether white matter microstructure could help determine differences in behavior towards ingroup and outgroup members. In the current research, we examine intergroup bias with the third-party punishment paradigm and white matter integrity and connectivity strength as determined by diffusion tensor imaging (DTI). We found that both increased white matter integrity at the right temporal-parietal junction (TPJ) and connectivity strength between the right TPJ and the dorsomedial prefrontal cortex (DMPFC) were associated with increased impartiality in the third-party punishment paradigm, i.e., reduced intergroup bias. Further, consistent with the role that these brain regions play in the mentalizing network, we found that these effects were mediated by mentalizing processes. Participants with greater white matter integrity at the right TPJ and connectivity strength between the right TPJ and the DMPFC employed mentalizing processes more equally for ingroup and outgroup members, and this non-biased use of mentalizing was associated with increased impartiality. The current results help shed light on the mechanisms of bias and, potentially, on interventions that promote impartiality over intergroup bias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to assess the influence of white matter lesions in patients with acute ischemic stroke treated with intra-arterial thrombolysis (IAT). From September 2003 to January 2010, we treated 400 patients with IAT at our institution. Of these patients, 292 were evaluated with MRI scans and included in this observational study. Clinical data were collected prospectively. Outcome after 3 months was measured with the modified Rankin Scale (mRS); mRS 0-1 was considered as favorable outcome. White matter lesions were scored visually by two observers using the semiquantitative Scheltens and Fazekas scores. Logistic regression analysis was used to identify the association of white matter lesions and clinical outcome, recanalization, and cerebral hemorrhage. The severity of white matter lesions was inversely correlated with favorable outcome, survival and successful recanalization. White matter lesions were an independent predictor of outcome (OR 0.569, p = 0.007) and survival (OR 0.550, p = 0.018) and a weak but independent predictor for recanalization (OR 0.949, p = 0.038). Asymptomatic intracerebral bleeding after IAT was associated with white matter lesions in the basal ganglia in the univariate analysis (p = 0.036), but not after multivariable analysis. The severity of white matter lesions independently predicts clinical outcome and survival in patients treated with IAT. White matter lesions are also a weak but independent predictor for recanalization. Symptomatic intracranial bleeding after IAT are not associated with white matter lesions. Therefore, white matter lesions should not be considered as a contraindication against IAT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Symptomatic narcolepsy is often related to hypothalamic, pontine, or mesencephalic lesions. Despite evidence of disturbances of the hypothalamic hypocretin system in patients with idiopathic narcolepsy, neuroimaging in patients with idiopathic narcolepsy revealed conflicting results and there is limited data on possible structural brain changes that might be associated with this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral disconnectivity due to white matter alterations in patients with chronic schizophrenia assessed by diffusion tensor imaging has been reported previously. The aim of this preliminary study is to investigate whether cerebral disconnectivity can be detected as early as the first episode of schizophrenia. Intervoxel coherence values were compared by voxel-based t test in 12 patients with first episode schizophrenia and 12 age- and gender-matched control groups. We detected 14 circumscribed significant clusters (P < 0.02), 3 of them with higher, and 11 of them with lower IC values for patients with schizophrenia than for healthy control groups. We interpret these white matter alterations in different regions to be disconnected fiber tracts already present early in schizophrenic disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed a Rey visual design learning test (RVDLT) in 17 subjects and measured intervoxel coherence (IC) by DTI as an indication of connectivity to investigate if visual memory performance would depend on white matter structure in healthy persons. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index. Voxel-based t-test analysis of the IC values was used to identify neighboring voxel clusters with significant differences between 7 low and 10 high test performers. We detected 9 circumscribed significant clusters (p< .01) with lower IC values in low performers than in high performers, with centers of gravity located in left and right superior temporal region, corpus callosum, left superior longitudinal fascicle, and left optic radiation. Using non-parametric correlation analysis, IC and memory performance were significantly correlated in each of the 9 clusters (r< .61 to r< .81; df=15, p< .01 to p< .0001). The findings provide in vivo evidence for the contribution of white matter structure to visual memory in healthy people.