6 resultados para white blossom sweet clover
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Two experiments were conducted with 30 dairy cows each, to study the preference for fresh (Experiment 1) and ensiled (Experiment 2) ryegrass, white and red clover. Both experiments consisted of three choice diets with white or red clover or both, offered with ryegrass, and two diets with ryegrass mixed with white or red clover (40% clover). Cows consumed diets with 37.7% fresh white and 45.9% red clover, and no preference was observed when the cows were offered all three forages. By contrast, cows preferred white and red clover silage (73.0 and 69.2%, respectively) over ryegrass silage (of lower nutritive quality). When offered three forages, cows preferred white (59.8%) over red clover (17.5%) and ryegrass (22.7%). Choice diets resulted in diets similar (fresh forages) or higher in nutrient content and digestibility (silages). Treatments did not affect feed intake and performance. Choices compared to mixed diets with red clover silage were preferable regarding the fatty acid composition of the milk fat. Obviously, only large differences in nutrient and energy concentration facilitate preferences for clovers over ryegrass, which could, depending on clover type, be beneficial in terms of the milk's fatty acid composition.
Protein changes and proteolytic degradation in red and white clover plants subjected to waterlogging
Resumo:
Red (Trifolium pratense L., cv. “Start”) and white clover varieties (Trifolium repens L., cv. “Debut” and cv. “Haifa”) were waterlogged for 14 days and subsequently recovered for the period of 21 days. Physiological and biochemical responses of the clover varieties were distinctive, which suggested different sensitivity toward flooding. The comparative study of morphological and biochemical parameters such as stem length, leaflet area, dry weight, protein content, protein pattern and proteolytic degradation revealed prominent changes under waterlogging conditions. Protease activity in the stressed plants increased significantly, especially in red clover cv. “Start”, which exhibited eightfold higher azocaseinolytic activity compared to the control. Changes in the protein profiles were detected by SDS-PAGE electrophoresis. The specific response of some proteins (Rubisco, Rubisco-binding protein, Rubisco activase, ClpA and ClpP protease subunits) toward the applied stress was assessed by immunoblotting. The results characterized the red clover cultivar “Start” as the most sensitive toward waterlogging, expressing reduced levels of Rubisco large and small subunits, high content of ClpP protease subunits and increased activity of protease isoforms.
Resumo:
Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37–40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another ‘cold-specific’ band at position 52–55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37–40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools.
Resumo:
Atmospheric ammonia (NH3) exchange during a single growing season was measured over two grass/clover fields managed by cutting and treated with different rates of mineral nitrogen (N) fertilizer. The aim was to quantify the total NH3 exchange of the two systems in relation to their N budget, the latter was split into N derived from symbiotic fixation, from fertilization, and from the soil. The experimental site was located in an intensively managed agricultural area on the Swiss plateau. Two adjacent fields with mixtures of perennial ryegrass (Lolium perenne L.), cocks foot (Dactylis glomerata L.), white clover (Trifolium repens L.) and red clover (Trifolium pratense L.) were used. These were treated with either 80 or 160 kg N ha−1 applied as NH4NO3 fertilizer in equal portions after each of four cuts. Continuous NH3 flux measurements were carried out by micrometeorological techniques. To determine the contribution of each species to the overall NH3 canopy compensation point, stomatal NH3 compensation points of the individual plant species were determined on the basis of NH4+ + NH3 (NHx) concentrations and pH in the apoplast. Symbiotic N2 fixation was measured by the 15N dilution method.