2 resultados para weeds species
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aim: Accumulating evidence indicates that species may be pre-adapted for invasion success in new ranges. In the light of increasing global nutrient accumulation, an important candidate pre-adaptation for invasiveness is the ability to grow in nutrient-rich habitats. Therefore we tested whether globally invasive species originating from Central Europe have come from more productive rather than less productive habitats. A further important candidate pre-adaptation for invasiveness is large niche width. Therefore, we also tested whether species able to grow across habitats with a wider range of productivity are more invasive. Location: Global with respect to invasiveness, and Central European with respect to origin of study species. Methods We examined whether average habitat productivity and its width across habitats are significant predictors of the success of Central European species as aliens and as weeds elsewhere in the world based on data in the Global Compendium of Weeds. The two habitat productivity measures were derived from nutrient indicator values (after Ellenberg) of accompanying species present in vegetation records of the comprehensive Czech National Phytosociological Database. In the analyses, we accounted for phylogenetic relatedness among species and for size of the native distribution ranges. Results: Species from more productive habitats and with a wider native habitat-productivity niche in Central Europe have higher alien success elsewhere in the world. Weediness of species increased with mean habitat productivity. Niche width was also an important determinant of weediness for species with their main occurrence in nutrient-poor habitats, but not for those from nutrient-rich habitats. Main conclusions: Our results indicate that Central European plant species from productive habitats and those species from nutrient-poor habitat with wide productivity-niche are pre-adapted to become invasive. These results suggest that the world-wide invasion success of many Central European species is likely to have been promoted by the global increase of resource-rich habitats.
Resumo:
Alien plants provide a unique opportunity to study evolution in novel environments, but relatively little is known about the extent to which they become locally adapted to different environments across their new range. Here, we compare northern and southern populations of the introduced species Senecio squalidus in Britain; S. squalidus has been in southern Britain for approximately 200 years and reached Scotland only about 50 years ago. We conducted common garden experiments at sites in the north and south of the species’ range in Britain. We also conducted glasshouse and growth chamber experiments to test the hypothesis that southern genotypes flower later, are more drought-tolerant, germinate and establish better at warmer temperatures, and are less sensitive to cold stress than their more northern counterparts. Results from the common garden experiments are largely consistent with the hypothesis of rapid adaptive divergence of populations of the species within the introduced range, with genotypes typically showing a home-site advantage. Results from the glasshouse and growth chamber experiments demonstrate adaptive divergence in ability to tolerate drought stress and high temperatures, as well as in phenology. In particular, southern genotypes were more tolerant of dry conditions and high temperatures and they flowered later than northern genotypes. Our results show that rapid local adaptation can occur in alien species, and they have implications for our understanding of the ecological genetics of range expansion of introduced weeds.