3 resultados para water heating
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.
Resumo:
The determination of stable isotope contents of pore-water from consolidated argillaceous rocks remains a critical issue. In order to understand the processes involved in techniques developed for acquiring stable isotope compositions of pore-water, a comparative study between different methods was based on core samples of the Tournemire argillite. It concerns two water extraction techniques based on vacuum distillation and two pore-water equilibration techniques (radial diffusion in liquid phase and diffusive exchange in vapor phase). The water-content values obtained from vacuum distillation at 50 °C are always the lowest, on average 8% lower than the values obtained by heating at 105 °C and 17% lower than the values obtained by heating at 150 °C. The amounts of pore-water estimated from vacuum distillation at 105 °C and 150 °C and from radial diffusion method are in good agreement with those determined by heating. On the contrary, the vapor exchange method provides the highest values of water contents. Concerning stable isotope data, a good agreement was found between those obtained by equilibration techniques and those of fracture water, especially for 2H. Vacuum distillation at high temperature (particularly at 150 °C) also provided results consistent with data of fracture fluids. On the other hand, distillation at 50 °C provides a systematic depletion in heavy isotopes (about –20‰ for 2H and –2.7‰ for 18O) that can be modelled by an incomplete Rayleigh-type distillation process.
Resumo:
Direct sublimation of a comet nucleus surface is usually considered to be the main source of gas in the coma of a comet. However, evidence from a number of comets including the recent spectacular images of Comet 103P/Hartley 2 by the EPOXI mission indicates that the nucleus alone may not be responsible for all, or possibly at times even most, of the total amount of gas seen in the coma. Indeed, the sublimation of icy grains, which have been injected into the coma, appears to constitute an important source. We use the fully-kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J., 685, 659−677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J., 732) to reproduce the measurements of column density and rotational temperature of water in Comet 73P-B/Schwassmann–Wachmann 3 obtained with a very high spatial resolution of ∼30 km using IRCS/Subaru in May 2006 (Bonev, B.P., Mumma, M.J., Kawakita, H., Kobayashi, H., Villanueva, G.L. [2008]. Icarus, 196, 241−248). For gas released solely from the cometary nucleus at a heliocentric distance of 1 AU, modeled rotational temperatures start at 110 K close to the surface and decrease to only several tens of degrees by 10–20 nucleus radii. However, the measured decay of both rotational temperature and column density with distance from the nucleus is much slower than predicted by this simple model. The addition of a substantial (distributed) source of gas from icy grains in the model slows the decay in rotational temperature and provides a more gradual drop in column density profiles. Together with a contribution of rotational heating of water molecules by electrons, the combined effects allow a much better match to the IRCS/Subaru observations. From the spatial distributions of water abundance and temperature measured in 73P/SW3-B, we have identified and quantified multiple mechanisms of release. The application of this tool to other comets may permit such studies over a range of heliocentric and geocentric distances.